These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20050623)

  • 1. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802.
    Metz S; Thiel W
    J Phys Chem B; 2010 Jan; 114(3):1506-17. PubMed ID: 20050623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism.
    Metz S; Thiel W
    J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate.
    Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T
    J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of action of xanthine oxidase.
    Choi EY; Stockert AL; Leimkühler S; Hille R
    J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.
    Amano T; Ochi N; Sato H; Sakaki S
    J Am Chem Soc; 2007 Jul; 129(26):8131-8. PubMed ID: 17564439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tautomeric energetics of xanthine oxidase substrates: xanthine, 2-oxo-6-methylpurine, and lumazine.
    Kim JH; Odutola JA; Popham J; Jones L; von Laven S
    J Inorg Biochem; 2001 Mar; 84(1-2):145-50. PubMed ID: 11330474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A theoretical study on the mechanism of the reductive half-reaction of xanthine oxidase.
    Zhang XH; Wu YD
    Inorg Chem; 2005 Mar; 44(5):1466-71. PubMed ID: 15732988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystal structure of arsenite-inhibited xanthine oxidase: μ-sulfido,μ-oxo double bridge between molybdenum and arsenic in the active site.
    Cao H; Hall J; Hille R
    J Am Chem Soc; 2011 Aug; 133(32):12414-7. PubMed ID: 21761899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase.
    Asai R; Nishino T; Matsumura T; Okamoto K; Igarashi K; Pai EF; Nishino T
    J Biochem; 2007 Apr; 141(4):525-34. PubMed ID: 17301076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of the catalytically labile oxygen at the active site of xanthine oxidase.
    Doonan CJ; Stockert A; Hille R; George GN
    J Am Chem Soc; 2005 Mar; 127(12):4518-22. PubMed ID: 15783235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: a combined QM/MM study.
    Metz S; Wang D; Thiel W
    J Am Chem Soc; 2009 Apr; 131(13):4628-40. PubMed ID: 19290633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-functional theory models of xanthine oxidoreductase activity: comparison of substrate tautomerization and protonation.
    Bayse CA
    Dalton Trans; 2009 Apr; (13):2306-14. PubMed ID: 19290363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
    Plastino J; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase.
    Rubinstein A; Major DT
    J Am Chem Soc; 2009 Jun; 131(24):8513-21. PubMed ID: 19492806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate orientation in 4-oxalocrotonate tautomerase and its effect on QM/MM energy profiles.
    Tuttle T; Thiel W
    J Phys Chem B; 2007 Jul; 111(26):7665-74. PubMed ID: 17567166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha.
    DuBois JL; Klinman JP
    Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.