BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20050660)

  • 1. Replacing Mn(2+) with Co(2+) in human arginase i enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines.
    Stone EM; Glazer ES; Chantranupong L; Cherukuri P; Breece RM; Tierney DL; Curley SA; Iverson BL; Georgiou G
    ACS Chem Biol; 2010 Mar; 5(3):333-42. PubMed ID: 20050660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of complexes with cobalt-reconstituted human arginase I.
    D'Antonio EL; Christianson DW
    Biochemistry; 2011 Sep; 50(37):8018-27. PubMed ID: 21870783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis and current strategies of therapeutic arginine depletion for cancer.
    Fultang L; Vardon A; De Santo C; Mussai F
    Int J Cancer; 2016 Aug; 139(3):501-9. PubMed ID: 26913960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells.
    Khoury O; Ghazale N; Stone E; El-Sibai M; Frankel AE; Abi-Habib RJ
    J Neurooncol; 2015 Mar; 122(1):75-85. PubMed ID: 25567351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity of human recombinant arginase I (Co)-PEG5000 in the presence of supplemental L-citrulline is dependent on decreased argininosuccinate synthetase expression in human cells.
    Agrawal V; Woo JH; Mauldin JP; Jo C; Stone EM; Georgiou G; Frankel AE
    Anticancer Drugs; 2012 Jan; 23(1):51-64. PubMed ID: 21955999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance.
    Huang HY; Wu WR; Wang YH; Wang JW; Fang FM; Tsai JW; Li SH; Hung HC; Yu SC; Lan J; Shiue YL; Hsing CH; Chen LT; Li CF
    Clin Cancer Res; 2013 Jun; 19(11):2861-72. PubMed ID: 23549872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes.
    Kuo MT; Savaraj N; Feun LG
    Oncotarget; 2010 Aug; 1(4):246-51. PubMed ID: 21152246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy and safety of pegzilarginase in arginase 1 deficiency (PEACE): a phase 3, randomized, double-blind, placebo-controlled, multi-centre trial.
    Russo RS; Gasperini S; Bubb G; Neuman L; Sloan LS; Diaz GA; Enns GM;
    EClinicalMedicine; 2024 Feb; 68():102405. PubMed ID: 38292042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of fused human arginase I for cancer therapy.
    Jawalekar SS; Kawathe PS; Sharma N; Anakha J; Tikoo K; Pande AH
    Invest New Drugs; 2023 Oct; 41(5):652-663. PubMed ID: 37532976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginase inhibitory activities of guaiane sesquiterpenoids from Curcuma comosa rhizomes.
    Hoang NN; Kodama T; Nakashima Y; Do KM; Hnin SYY; Lee YE; Prema ; Ikumi N; Morita H
    J Nat Med; 2023 Sep; 77(4):891-897. PubMed ID: 37462864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human arginase I: a potential broad-spectrum anti-cancer agent.
    Anakha J; Prasad YR; Sharma N; Pande AH
    3 Biotech; 2023 May; 13(5):159. PubMed ID: 37152001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Biochemical Insights into Post-Translational Arginine-to-Ornithine Peptide Modifications by an Atypical Arginase.
    Mordhorst S; Badmann T; Bösch NM; Morinaka BI; Rauch H; Piel J; Groll M; Vagstad AL
    ACS Chem Biol; 2023 Mar; 18(3):528-536. PubMed ID: 36791048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human arginase 1, a Jack of all trades?
    Anakha J; Kawathe PS; Datta S; Jawalekar SS; Banerjee UC; Pande AH
    3 Biotech; 2022 Oct; 12(10):264. PubMed ID: 36082360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginase: Mechanisms and Clinical Application in Hematologic Malignancy.
    Du Z; Li T; Huang J; Chen Y; Chen C
    Front Oncol; 2022; 12():905893. PubMed ID: 35814439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic Reprogramming in Hematologic Malignancies: Advances and Clinical Perspectives.
    Yu Z; Zhou X; Wang X
    Cancer Res; 2022 Sep; 82(17):2955-2963. PubMed ID: 35771627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The past, present, and future of enzyme-based therapies.
    Hennigan JN; Lynch MD
    Drug Discov Today; 2022 Jan; 27(1):117-133. PubMed ID: 34537332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment.
    Kumari N; Bansal S
    Cancer Chemother Pharmacol; 2021 Oct; 88(4):565-594. PubMed ID: 34309734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site.
    Paul A; Mishra S
    J Biol Inorg Chem; 2021 Aug; 26(5):569-582. PubMed ID: 34241683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of autophagy following [HuArgI (Co)-PEG5000]-induced arginine deprivation mediates cell death in colon cancer cells.
    Swayden M; Bekdash A; Fakhoury I; El-Atat O; Borjac-Natour J; El-Sibai M; Abi-Habib RJ
    Hum Cell; 2021 Jan; 34(1):152-164. PubMed ID: 32979152
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.