These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 20050868)
1. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen. Schellenberger S; Kolb S; Drake HL Environ Microbiol; 2010 Apr; 12(4):845-61. PubMed ID: 20050868 [TBL] [Abstract][Full Text] [Related]
2. Functionally redundant cellobiose-degrading soil bacteria respond differentially to oxygen. Schellenberger S; Drake HL; Kolb S Appl Environ Microbiol; 2011 Sep; 77(17):6043-8. PubMed ID: 21742909 [TBL] [Abstract][Full Text] [Related]
3. Enterobacteriaceae facilitate the anaerobic degradation of glucose by a forest soil. Degelmann DM; Kolb S; Dumont M; Murrell JC; Drake HL FEMS Microbiol Ecol; 2009 Jun; 68(3):312-9. PubMed ID: 19453494 [TBL] [Abstract][Full Text] [Related]
4. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Li T; Mazéas L; Sghir A; Leblon G; Bouchez T Environ Microbiol; 2009 Apr; 11(4):889-904. PubMed ID: 19128320 [TBL] [Abstract][Full Text] [Related]
5. Identification of cellulolytic bacteria in soil by stable isotope probing. Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363 [TBL] [Abstract][Full Text] [Related]
6. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides. Schellenberger S; Drake HL; Kolb S FEMS Microbiol Lett; 2012 Feb; 327(1):60-5. PubMed ID: 22098368 [TBL] [Abstract][Full Text] [Related]
7. Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Kittelmann S; Friedrich MW Environ Microbiol; 2008 Jan; 10(1):31-46. PubMed ID: 18211265 [TBL] [Abstract][Full Text] [Related]
8. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Noll M; Matthies D; Frenzel P; Derakshani M; Liesack W Environ Microbiol; 2005 Mar; 7(3):382-95. PubMed ID: 15683399 [TBL] [Abstract][Full Text] [Related]
9. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Wagner D; Kobabe S; Liebner S Can J Microbiol; 2009 Jan; 55(1):73-83. PubMed ID: 19190703 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic characterization of Rice Cluster III archaea without prior isolation by applying quantitative polymerase chain reaction to an enrichment culture. Kemnitz D; Kolb S; Conrad R Environ Microbiol; 2005 Apr; 7(4):553-65. PubMed ID: 15816932 [TBL] [Abstract][Full Text] [Related]
11. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Martinez RJ; Mills HJ; Story S; Sobecky PA Environ Microbiol; 2006 Oct; 8(10):1783-96. PubMed ID: 16958759 [TBL] [Abstract][Full Text] [Related]
12. Effect of temperature change on the composition of the bacterial and archaeal community potentially involved in the turnover of acetate and propionate in methanogenic rice field soil. Noll M; Klose M; Conrad R FEMS Microbiol Ecol; 2010 Aug; 73(2):215-25. PubMed ID: 20491920 [TBL] [Abstract][Full Text] [Related]
13. Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Nissilä ME; Tähti HP; Rintala JA; Puhakka JA Bioresour Technol; 2011 Mar; 102(6):4501-6. PubMed ID: 21251819 [TBL] [Abstract][Full Text] [Related]
14. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
15. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. Uz I; Ogram AV FEMS Microbiol Ecol; 2006 Sep; 57(3):396-408. PubMed ID: 16907754 [TBL] [Abstract][Full Text] [Related]
16. Changes in land use alter the structure of bacterial communities in Western Amazon soils. da C Jesus E; Marsh TL; Tiedje JM; de S Moreira FM ISME J; 2009 Sep; 3(9):1004-11. PubMed ID: 19440233 [TBL] [Abstract][Full Text] [Related]
17. Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Langenheder S; Prosser JI Environ Microbiol; 2008 Sep; 10(9):2245-56. PubMed ID: 18479445 [TBL] [Abstract][Full Text] [Related]
18. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes. Talia P; Sede SM; Campos E; Rorig M; Principi D; Tosto D; Hopp HE; Grasso D; Cataldi A Res Microbiol; 2012 Apr; 163(3):221-32. PubMed ID: 22202170 [TBL] [Abstract][Full Text] [Related]
19. Soil CO2 flux and photoautotrophic community composition in high-elevation, 'barren' soil. Freeman KR; Pescador MY; Reed SC; Costello EK; Robeson MS; Schmidt SK Environ Microbiol; 2009 Mar; 11(3):674-86. PubMed ID: 19187281 [TBL] [Abstract][Full Text] [Related]
20. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Kovatcheva-Datchary P; Egert M; Maathuis A; Rajilić-Stojanović M; de Graaf AA; Smidt H; de Vos WM; Venema K Environ Microbiol; 2009 Apr; 11(4):914-26. PubMed ID: 19128319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]