These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20050923)

  • 21. AP-2ε Expression in Developing Retina: Contributing to the Molecular Diversity of Amacrine Cells.
    Jain S; Glubrecht DD; Germain DR; Moser M; Godbout R
    Sci Rep; 2018 Feb; 8(1):3386. PubMed ID: 29467543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and regulation of tissue-specific cis-acting elements associated with the human AP-2alpha gene.
    Zhang J; Williams T
    Dev Dyn; 2003 Oct; 228(2):194-207. PubMed ID: 14517991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The AP1 transcription factor Fra2 is required for efficient cartilage development.
    Karreth F; Hoebertz A; Scheuch H; Eferl R; Wagner EF
    Development; 2004 Nov; 131(22):5717-25. PubMed ID: 15509771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development.
    Meech R; Edelman DB; Jones FS; Makarenkova HP
    Development; 2005 May; 132(9):2135-46. PubMed ID: 15800003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Roles of insulin-like growth factor-I (IGF-I) and IGF-I binding protein-2 (IGFBP2) and -5 (IGFBP5) in developing chick limbs.
    McQueeney K; Dealy CN
    Growth Horm IGF Res; 2001 Dec; 11(6):346-63. PubMed ID: 11914022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of AP-2alpha impacts multiple aspects of ventral body wall development and closure.
    Brewer S; Williams T
    Dev Biol; 2004 Mar; 267(2):399-417. PubMed ID: 15013802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional networks controlling skeletal development.
    Hartmann C
    Curr Opin Genet Dev; 2009 Oct; 19(5):437-43. PubMed ID: 19836226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage.
    Asou Y; Nifuji A; Tsuji K; Shinomiya K; Olson EN; Koopman P; Noda M
    J Orthop Res; 2002 Jul; 20(4):827-33. PubMed ID: 12168674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved molecular program regulating cranial and appendicular skeletogenesis.
    Eames BF; Helms JA
    Dev Dyn; 2004 Sep; 231(1):4-13. PubMed ID: 15305282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The AP-2 family of transcription factors.
    Eckert D; Buhl S; Weber S; Jäger R; Schorle H
    Genome Biol; 2005; 6(13):246. PubMed ID: 16420676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Modulation of transcriptional regulation during bone and cartilage development and their disease].
    Nishimura R; Hata K; Takashima R; Yoshida M; Nakamura E; Kida J; Yagi H
    Clin Calcium; 2013 Nov; 23(11):1585-93. PubMed ID: 24162598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation.
    Niebler S; Angele P; Kujat R; Bosserhoff AK
    Biomed Res Int; 2015; 2015():380590. PubMed ID: 26273614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of the mouse AP-2 epsilon gene: a novel family member expressed in the developing olfactory bulb.
    Feng W; Williams T
    Mol Cell Neurosci; 2003 Oct; 24(2):460-75. PubMed ID: 14572467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heritable diseases of the skeleton. Part II: Molecular insights into skeletal development-matrix components and their homeostasis.
    Mundlos S; Olsen BR
    FASEB J; 1997 Mar; 11(4):227-33. PubMed ID: 9068611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Dual role of transcription factor AP-2 in carcinogenesis].
    Liang S; Deng H
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2010 Jul; 39(4):430-5. PubMed ID: 20731046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2beta.
    Hong SJ; Lardaro T; Oh MS; Huh Y; Ding Y; Kang UJ; Kirfel J; Buettner R; Kim KS
    J Biol Chem; 2008 Jun; 283(24):16860-7. PubMed ID: 18424435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcription factor AP-2beta in development, differentiation and tumorigenesis.
    Raap M; Gierendt L; Kreipe HH; Christgen M
    Int J Cancer; 2021 Sep; 149(6):1221-1227. PubMed ID: 33720400
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retrotransposons Manipulating Mammalian Skeletal Development in Chondrocytes.
    Kubota S; Ishikawa T; Kawata K; Hattori T; Nishida T
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina.
    Bassett EA; Korol A; Deschamps PA; Buettner R; Wallace VA; Williams T; West-Mays JA
    Dev Dyn; 2012 Apr; 241(4):814-29. PubMed ID: 22411557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcription factor AP-2 and monoaminergic functions in the central nervous system.
    Damberg M
    J Neural Transm (Vienna); 2005 Oct; 112(10):1281-96. PubMed ID: 15959839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.