These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20051253)
21. Effects of sequential exposure to multiple concentrations of methylmercury in the rat hippocampal slice. Fountain SB; Rowan JD Ecotoxicol Environ Saf; 2000 Oct; 47(2):130-6. PubMed ID: 11023691 [TBL] [Abstract][Full Text] [Related]
22. Methylmercury interaction with lymphocyte cholinergic muscarinic receptors in developing rats. Coccini T; Randine G; Castoldi AF; Acerbi D; Manzo L Environ Res; 2007 Feb; 103(2):229-37. PubMed ID: 16808911 [TBL] [Abstract][Full Text] [Related]
23. Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Limke TL; Bearss JJ; Atchison WD Toxicol Sci; 2004 Jul; 80(1):60-8. PubMed ID: 15141107 [TBL] [Abstract][Full Text] [Related]
24. Developmental exposure to methylmercury elicits early cell death in the cerebral cortex and long-term memory deficits in the rat. Ferraro L; Tomasini MC; Tanganelli S; Mazza R; Coluccia A; Carratù MR; Gaetani S; Cuomo V; Antonelli T Int J Dev Neurosci; 2009 Apr; 27(2):165-74. PubMed ID: 19084587 [TBL] [Abstract][Full Text] [Related]
25. Single cell RNA sequencing detects persistent cell type- and methylmercury exposure paradigm-specific effects in a human cortical neurodevelopmental model. Diana Neely M; Xie S; Prince LM; Kim H; Tukker AM; Aschner M; Thimmapuram J; Bowman AB Food Chem Toxicol; 2021 Aug; 154():112288. PubMed ID: 34089799 [TBL] [Abstract][Full Text] [Related]
26. The miR206-JunD Circuit Mediates the Neurotoxic Effect of Methylmercury in Cortical Neurons. Guida N; Valsecchi V; Laudati G; Serani A; Mascolo L; Molinaro P; Montuori P; Di Renzo G; Canzoniero LM; Formisano L Toxicol Sci; 2018 Jun; 163(2):569-578. PubMed ID: 29522201 [TBL] [Abstract][Full Text] [Related]
27. Differential effects of methylmercury on gamma-aminobutyric acid type A receptor currents in rat cerebellar granule and cerebral cortical neurons in culture. Herden CJ; Pardo NE; Hajela RK; Yuan Y; Atchison WD J Pharmacol Exp Ther; 2008 Feb; 324(2):517-28. PubMed ID: 17977981 [TBL] [Abstract][Full Text] [Related]
28. Effects of postnatal exposure to methylmercury on spatial learning and memory and brain NMDA receptor mRNA expression in rats. Liu W; Wang X; Zhang R; Zhou Y Toxicol Lett; 2009 Aug; 188(3):230-5. PubMed ID: 19409459 [TBL] [Abstract][Full Text] [Related]
29. Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: involvement of oxidative stress and glutamate metabolism dysfunction. Xu B; Xu ZF; Deng Y; Liu W; Yang HB; Wei YG Toxicology; 2012 Oct; 300(3):112-20. PubMed ID: 22722016 [TBL] [Abstract][Full Text] [Related]
30. Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices. Yuan Y; Atchison WD Mol Pharmacol; 2007 Apr; 71(4):1109-21. PubMed ID: 17244699 [TBL] [Abstract][Full Text] [Related]
31. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Bose R; Onishchenko N; Edoff K; Janson Lang AM; Ceccatelli S Toxicol Sci; 2012 Dec; 130(2):383-90. PubMed ID: 22918959 [TBL] [Abstract][Full Text] [Related]
32. Neurotransmitter amines and antioxidant agents in neuronal protection against methylmercury-induced cytotoxicity in primary cultures of mice cortical neurons. Olguín N; Müller ML; Rodríguez-Farré E; Suñol C Neurotoxicology; 2018 Dec; 69():278-287. PubMed ID: 30075218 [TBL] [Abstract][Full Text] [Related]
33. Blockade of GABA(B) receptors facilitates muscarinic agonist-induced epileptiform activity in immature rat piriform cortex in vitro. Libri V; Constanti A; Postlethwaite M; Bowery NG Naunyn Schmiedebergs Arch Pharmacol; 1998 Aug; 358(2):168-74. PubMed ID: 9750001 [TBL] [Abstract][Full Text] [Related]
35. Hyperoxic stimulation of synchronous orthodromic activity and induction of neural plasticity does not require changes in excitatory synaptic transmission. Garcia AJ; Putnam RW; Dean JB J Appl Physiol (1985); 2010 Sep; 109(3):820-9. PubMed ID: 20558752 [TBL] [Abstract][Full Text] [Related]
36. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats. Fujimura M; Usuki F Toxicol Appl Pharmacol; 2015 Oct; 288(1):19-25. PubMed ID: 26184774 [TBL] [Abstract][Full Text] [Related]
37. Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury-induced neuronal apoptosis in rat cerebral cortex. Yang T; Xu Z; Liu W; Xu B; Deng Y Environ Toxicol; 2020 Jun; 35(6):683-696. PubMed ID: 32061141 [TBL] [Abstract][Full Text] [Related]
38. Alpha-lipoic acid protects against methylmercury-induced neurotoxic effects via inhibition of oxidative stress in rat cerebral cortex. Yang TY; Xu ZF; Liu W; Xu B; Deng Y; Li YH; Feng S Environ Toxicol Pharmacol; 2015 Jan; 39(1):157-66. PubMed ID: 25522843 [TBL] [Abstract][Full Text] [Related]
39. Microglial ROCK is essential for chronic methylmercury-induced neurodegeneration. Shinozaki Y; Danjo Y; Koizumi S J Neurochem; 2019 Oct; 151(1):64-78. PubMed ID: 31278875 [TBL] [Abstract][Full Text] [Related]
40. Effects of methylmercury on the pattern of NADPH diaphorase expression and astrocytic activation in the rat. Freire MAM; Lima RR; Nascimento PC; Gomes-Leal W; Pereira A Ecotoxicol Environ Saf; 2020 Sep; 201():110799. PubMed ID: 32544743 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]