BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 20051266)

  • 1. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes.
    Musa-Aziz R; Boron WF; Parker MD
    Methods; 2010 May; 51(1):134-45. PubMed ID: 20051266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous transport systems in the Xenopus laevis oocyte plasma membrane.
    Sobczak K; Bangel-Ruland N; Leier G; Weber WM
    Methods; 2010 May; 51(1):183-9. PubMed ID: 19963061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes.
    Terhag J; Cavara NA; Hollmann M
    Methods; 2010 May; 51(1):66-74. PubMed ID: 20123125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes.
    Zampighi GA; Kreman M; Boorer KJ; Loo DD; Bezanilla F; Chandy G; Hall JE; Wright EM
    J Membr Biol; 1995 Nov; 148(1):65-78. PubMed ID: 8558603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes.
    Sacher A; Cohen A; Nelson N
    J Exp Biol; 2001 Mar; 204(Pt 6):1053-61. PubMed ID: 11222124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton transport mechanism in the cell membrane of Xenopus laevis oocytes.
    Burckhardt BC; Kroll B; Frömter E
    Pflugers Arch; 1992 Jan; 420(1):78-82. PubMed ID: 1313170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs.
    Peter AB; Schittny JC; Niggli V; Reuter H; Sigel E
    J Cell Biol; 1991 Aug; 114(3):455-64. PubMed ID: 1713591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patch-Clamp and Perfusion Techniques to Study Ion Channels Expressed in
    Zhang G; Cui J
    Cold Spring Harb Protoc; 2018 Apr; 2018(4):pdb.prot099051. PubMed ID: 29382809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring ion transport activities in Xenopus oocytes using the ion-trap technique.
    Blanchard MG; Longpré JP; Wallendorff B; Lapointe JY
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1464-72. PubMed ID: 18829896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GLUT Characterization Using Frog Xenopus laevis Oocytes.
    Long W; O'Neill D; Cheeseman CI
    Methods Mol Biol; 2018; 1713():45-55. PubMed ID: 29218516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters.
    Mackey JR; Yao SY; Smith KM; Karpinski E; Baldwin SA; Cass CE; Young JD
    J Natl Cancer Inst; 1999 Nov; 91(21):1876-81. PubMed ID: 10547395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity.
    Parker MD; Musa-Aziz R; Rojas JD; Choi I; Daly CM; Boron WF
    J Biol Chem; 2008 May; 283(19):12777-88. PubMed ID: 18319254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional expression of mammalian glucose transporters in Xenopus laevis oocytes: evidence for cell-dependent insulin sensitivity.
    Vera JC; Rosen OM
    Mol Cell Biol; 1989 Oct; 9(10):4187-95. PubMed ID: 2479821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes.
    Wu J; McNicholas CM; Bevensee MO
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):14150-5. PubMed ID: 19667194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage Clamp Fluorometry: Illuminating the Dynamics of Ion Channels.
    Sastre D; Fedida D
    Methods Mol Biol; 2024; 2796():119-138. PubMed ID: 38856899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule.
    Jutabha P; Kanai Y; Hosoyamada M; Chairoungdua A; Kim DK; Iribe Y; Babu E; Kim JY; Anzai N; Chatsudthipong V; Endou H
    J Biol Chem; 2003 Jul; 278(30):27930-8. PubMed ID: 12740363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological recording from Xenopus oocytes.
    Stühmer W
    Methods Enzymol; 1992; 207():319-39. PubMed ID: 1382188
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional characterization of two novel mammalian electrogenic proton-dependent amino acid cotransporters.
    Boll M; Foltz M; Rubio-Aliaga I; Kottra G; Daniel H
    J Biol Chem; 2002 Jun; 277(25):22966-73. PubMed ID: 11959859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
    Methfessel C; Witzemann V; Takahashi T; Mishina M; Numa S; Sakmann B
    Pflugers Arch; 1986 Dec; 407(6):577-88. PubMed ID: 2432468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.
    Tammaro P; Shimomura K; Proks P
    Methods Mol Biol; 2008; 491():127-39. PubMed ID: 18998089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.