These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery. Eches O; Dobigeon N; Mailhes C; Tourneret JY IEEE Trans Image Process; 2010 Jun; 19(6):1403-13. PubMed ID: 20215083 [TBL] [Abstract][Full Text] [Related]
3. Random N-finder (N-FINDR) endmember extraction algorithms for hyperspectral imagery. Chang CI; Wu CC; Tsai CT IEEE Trans Image Process; 2011 Mar; 20(3):641-56. PubMed ID: 20813643 [TBL] [Abstract][Full Text] [Related]
4. Use of weighting algorithms to improve traditional support vector machine based classifications of reflectance data. Qi B; Zhao C; Youn E; Nansen C Opt Express; 2011 Dec; 19(27):26816-26. PubMed ID: 22274264 [TBL] [Abstract][Full Text] [Related]
5. [An algorithm of spectral minimum shannon entropy on extracting endmember of hyperspectral image]. Yang KM; Liu SW; Wang LW; Yang J; Sun YY; He DD Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2229-33. PubMed ID: 25474967 [TBL] [Abstract][Full Text] [Related]
6. [Research on endmember extraction algorithm based on spectral classification]. Gao XH; Xiangli B; Wei RY; Lü QB; Wei JX Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1995-8. PubMed ID: 21942068 [TBL] [Abstract][Full Text] [Related]
7. Automatic extraction of optimal endmembers from airborne hyperspectral imagery using iterative error analysis (IEA) and spectral discrimination measurements. Song A; Chang A; Choi J; Choi S; Kim Y Sensors (Basel); 2015 Jan; 15(2):2593-613. PubMed ID: 25625907 [TBL] [Abstract][Full Text] [Related]
8. [The estimation model of rice leaf area index using hyperspectral data based on support vector machine]. Yang XH; Huang JF; Wang XZ; Wang FM Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1837-41. PubMed ID: 18975815 [TBL] [Abstract][Full Text] [Related]
9. [Endmember extraction used for hyperspectral imagery loss compression]. Zhang LY; Chen DR; Tao P Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1445-8. PubMed ID: 18844136 [TBL] [Abstract][Full Text] [Related]
11. Evaluating automated endmember extraction for classifying hyperspectral data and deriving spectral parameters for monitoring forest vegetation health. Singh R; Kumar V Environ Monit Assess; 2022 Nov; 195(1):72. PubMed ID: 36331623 [TBL] [Abstract][Full Text] [Related]
12. Neighborhood property-based pattern selection for support vector machines. Shin H; Cho S Neural Comput; 2007 Mar; 19(3):816-55. PubMed ID: 17298235 [TBL] [Abstract][Full Text] [Related]
13. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. Tao D; Tang X; Li X; Wu X IEEE Trans Pattern Anal Mach Intell; 2006 Jul; 28(7):1088-99. PubMed ID: 16792098 [TBL] [Abstract][Full Text] [Related]
14. [The study of SVM-based recognition of particles in urine sediment]. Fu C; Xia SR; Zhang ZC Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Nov; 32(6):409-12. PubMed ID: 19253571 [TBL] [Abstract][Full Text] [Related]
15. Hybrid huberized support vector machines for microarray classification and gene selection. Wang L; Zhu J; Zou H Bioinformatics; 2008 Feb; 24(3):412-9. PubMed ID: 18175770 [TBL] [Abstract][Full Text] [Related]
16. SVM-HUSTLE--an iterative semi-supervised machine learning approach for pairwise protein remote homology detection. Shah AR; Oehmen CS; Webb-Robertson BJ Bioinformatics; 2008 Mar; 24(6):783-90. PubMed ID: 18245127 [TBL] [Abstract][Full Text] [Related]
17. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability. Halimi A; Dobigeon N; Tourneret JY IEEE Trans Image Process; 2015 Dec; 24(12):4904-17. PubMed ID: 26302517 [TBL] [Abstract][Full Text] [Related]
18. Recursive gene selection based on maximum margin criterion: a comparison with SVM-RFE. Niijima S; Kuhara S BMC Bioinformatics; 2006 Dec; 7():543. PubMed ID: 17187691 [TBL] [Abstract][Full Text] [Related]
19. Spectral mapping tools from the earth sciences applied to spectral microscopy data. Harris AT Cytometry A; 2006 Aug; 69(8):872-9. PubMed ID: 16969808 [TBL] [Abstract][Full Text] [Related]
20. Endmember extraction and abundance estimation algorithm based on double-compressed sampling. Wang L; Bi Y; Wang W; Li J Sci Rep; 2024 Aug; 14(1):17934. PubMed ID: 39095382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]