These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Gao W; Cense B; Zhang Y; Jonnal RS; Miller DT Opt Express; 2008 Apr; 16(9):6486-501. PubMed ID: 18516251 [TBL] [Abstract][Full Text] [Related]
6. Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor. Murphy K; Dainty C Opt Express; 2012 Feb; 20(5):4988-5002. PubMed ID: 22418303 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument. Díaz-Doutón F; Benito A; Pujol J; Arjona M; Güell JL; Artal P Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1710-6. PubMed ID: 16565413 [TBL] [Abstract][Full Text] [Related]
9. Multi-layer Shack-Hartmann wavefront sensing in the point source regime. Akondi V; Dubra A Biomed Opt Express; 2021 Jan; 12(1):409-432. PubMed ID: 33520390 [TBL] [Abstract][Full Text] [Related]
10. COACH-based Shack-Hartmann wavefront sensor with an array of phase coded masks. Dubey N; Kumar R; Rosen J Opt Express; 2021 Sep; 29(20):31859-31874. PubMed ID: 34615269 [TBL] [Abstract][Full Text] [Related]
11. Modified Shack-Hartmann wavefront sensor using an array of superresolution pupil filters. Ríos S; López D Opt Express; 2009 Jun; 17(12):9669-79. PubMed ID: 19506616 [TBL] [Abstract][Full Text] [Related]
12. Effect of a contact lens on mouse retinal in vivo imaging: Effective focal length changes and monochromatic aberrations. Zhang P; Mocci J; Wahl DJ; Meleppat RK; Manna SK; Quintavalla M; Muradore R; Sarunic MV; Bonora S; Pugh EN; Zawadzki RJ Exp Eye Res; 2018 Jul; 172():86-93. PubMed ID: 29604280 [TBL] [Abstract][Full Text] [Related]
14. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor. Lee J; Shack RV; Descour MR Appl Opt; 2005 Aug; 44(23):4838-45. PubMed ID: 16114520 [TBL] [Abstract][Full Text] [Related]
15. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor. Zhao L; Bai N; Li X; Ong LS; Fang ZP; Asundi AK Appl Opt; 2006 Jan; 45(1):90-4. PubMed ID: 16422324 [TBL] [Abstract][Full Text] [Related]
16. Dual wavefront sensing channel monocular adaptive optics system for accommodation studies. Hampson KM; Chin SS; Mallen EA Opt Express; 2009 Sep; 17(20):18229-40. PubMed ID: 19907614 [TBL] [Abstract][Full Text] [Related]
17. Design and validation of a scanning Shack Hartmann aberrometer for measurements of the eye over a wide field of view. Wei X; Thibos L Opt Express; 2010 Jan; 18(2):1134-43. PubMed ID: 20173936 [TBL] [Abstract][Full Text] [Related]
18. Highly Sensitive Shack-Hartmann Wavefront Sensor: Application to Non-Transparent Tissue Mimic Imaging with Adaptive Light-Sheet Fluorescence Microscopy. Morgado Brajones J; Clouvel G; Dovillaire G; Levecq X; Lorenzo C Methods Protoc; 2019 Jul; 2(3):. PubMed ID: 31336779 [TBL] [Abstract][Full Text] [Related]
19. Shack-Hartmann wavefront sensor with large dynamic range. Xia M; Li C; Hu L; Cao Z; Mu Q; Xuan L J Biomed Opt; 2010; 15(2):026009. PubMed ID: 20459254 [TBL] [Abstract][Full Text] [Related]
20. Phase response measurement of spatial light modulators based on a Shack-Hartmann wavefront sensor. Zhou X; Jia S; Yu H; Lin Z; Zhang H; Zhang Y Appl Opt; 2022 Jun; 61(16):4796-4801. PubMed ID: 36255962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]