BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20052404)

  • 1. Magnetic resonance water proton relaxation in protein solutions and tissue: T(1rho) dispersion characterization.
    Chen EL; Kim RJ
    PLoS One; 2010 Jan; 5(1):e8565. PubMed ID: 20052404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation.
    Duvvuri U; Goldberg AD; Kranz JK; Hoang L; Reddy R; Wehrli FW; Wand AJ; Englander SW; Leigh JS
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12479-84. PubMed ID: 11606754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of bi-exponential T(1ρ) relaxation of in-vivo rat muscles at 3T.
    Yuan J; Zhao F; Chan Q; Wang YX
    Acta Radiol; 2012 Jul; 53(6):675-81. PubMed ID: 22761346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T1rho Dispersion profile of rat tissues in vitro at very low locking fields.
    Koskinen SK; Niemi PT; Kajander SA; Komu ME
    Magn Reson Imaging; 2006 Apr; 24(3):295-9. PubMed ID: 16563959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of intracellular pH, blood, and tissue oxygen tension on T1rho relaxation in rat brain.
    Kettunen MI; Gröhn OH; Silvennoinen MJ; Penttonen M; Kauppinen RA
    Magn Reson Med; 2002 Sep; 48(3):470-7. PubMed ID: 12210911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of chemical exchange to T1ρ dispersion in a tissue model.
    Cobb JG; Xie J; Gore JC
    Magn Reson Med; 2011 Dec; 66(6):1563-71. PubMed ID: 21590720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T 1 rho-relaxation mapping of human femoral-tibial cartilage in vivo.
    Regatte RR; Akella SV; Wheaton AJ; Borthakur A; Kneeland JB; Reddy R
    J Magn Reson Imaging; 2003 Sep; 18(3):336-41. PubMed ID: 12938129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth and orientational dependencies of MRI T(2) and T(1ρ) sensitivities towards trypsin degradation and Gd-DTPA(2-) presence in articular cartilage at microscopic resolution.
    Wang N; Xia Y
    Magn Reson Imaging; 2012 Apr; 30(3):361-70. PubMed ID: 22244543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On- and off-resonance T(1rho) MRI in acute cerebral ischemia of the rat.
    Gröhn OH; Mäkelä HI; Lukkarinen JA; DelaBarre L; Lin J; Garwood M; Kauppinen RA
    Magn Reson Med; 2003 Jan; 49(1):172-6. PubMed ID: 12509834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
    Lundström P; Akke M
    J Biomol NMR; 2005 Jun; 32(2):163-73. PubMed ID: 16034667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro.
    Duvvuri U; Kudchodkar S; Reddy R; Leigh JS
    Osteoarthritis Cartilage; 2002 Nov; 10(11):838-44. PubMed ID: 12435327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of changes in articular cartilage proteoglycan by T(1rho) magnetic resonance imaging.
    Wheaton AJ; Dodge GR; Borthakur A; Kneeland JB; Schumacher HR; Reddy R
    J Orthop Res; 2005 Jan; 23(1):102-8. PubMed ID: 15607881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage.
    Souza RB; Stehling C; Wyman BT; Hellio Le Graverand MP; Li X; Link TM; Majumdar S
    Osteoarthritis Cartilage; 2010 Dec; 18(12):1557-63. PubMed ID: 20950693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of neuronal loss using T(1rho) MRI assessment of (1)H(2)O spin dynamics in the aphakia mouse.
    Michaeli S; Burns TC; Kudishevich E; Harel N; Hanson T; Sorce DJ; Garwood M; Low WC
    J Neurosci Methods; 2009 Feb; 177(1):160-7. PubMed ID: 19027791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis.
    Li X; Pai A; Blumenkrantz G; Carballido-Gamio J; Link T; Ma B; Ries M; Majumdar S
    Magn Reson Med; 2009 Jun; 61(6):1310-8. PubMed ID: 19319904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientational dependent sensitivities of T2 and T1ρ towards trypsin degradation and Gd-DTPA2- presence in bovine nasal cartilage.
    Wang N; Xia Y
    MAGMA; 2012 Aug; 25(4):297-304. PubMed ID: 22071581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-T1rho-relaxation mapping of articular cartilage: in vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects.
    Regatte RR; Akella SV; Wheaton AJ; Lech G; Borthakur A; Kneeland JB; Reddy R
    Acad Radiol; 2004 Jul; 11(7):741-9. PubMed ID: 15217591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI.
    Li X; Benjamin Ma C; Link TM; Castillo DD; Blumenkrantz G; Lozano J; Carballido-Gamio J; Ries M; Majumdar S
    Osteoarthritis Cartilage; 2007 Jul; 15(7):789-97. PubMed ID: 17307365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3T.
    Carballido-Gamio J; Link TM; Li X; Han ET; Krug R; Ries MD; Majumdar S
    J Magn Reson Imaging; 2008 Jul; 28(1):227-35. PubMed ID: 18581346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI.
    Zhou J; Payen JF; Wilson DA; Traystman RJ; van Zijl PC
    Nat Med; 2003 Aug; 9(8):1085-90. PubMed ID: 12872167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.