These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20052993)

  • 1. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis.
    Mahlstedt SA; Walsh CT
    Biochemistry; 2010 Feb; 49(5):912-23. PubMed ID: 20052993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereochemical outcome at four stereogenic centers during conversion of prephenate to tetrahydrotyrosine by BacABGF in the bacilysin pathway.
    Parker JB; Walsh CT
    Biochemistry; 2012 Jul; 51(28):5622-32. PubMed ID: 22765234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olefin isomerization regiochemistries during tandem action of BacA and BacB on prephenate in bacilysin biosynthesis.
    Parker JB; Walsh CT
    Biochemistry; 2012 Apr; 51(15):3241-51. PubMed ID: 22483065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin.
    Parker JB; Walsh CT
    Biochemistry; 2013 Feb; 52(5):889-901. PubMed ID: 23317005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the role of Bacillus subtilis YwfH (BacG) in tetrahydrotyrosine synthesis.
    Rajavel M; Perinbam K; Gopal B
    Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):324-32. PubMed ID: 23519407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Bacillus subtilis BacB in the synthesis of bacilysin.
    Rajavel M; Mitra A; Gopal B
    J Biol Chem; 2009 Nov; 284(46):31882-92. PubMed ID: 19776011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prephenate decarboxylases: a new prephenate-utilizing enzyme family that performs nonaromatizing decarboxylation en route to diverse secondary metabolites.
    Mahlstedt S; Fielding EN; Moore BS; Walsh CT
    Biochemistry; 2010 Oct; 49(42):9021-3. PubMed ID: 20863139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acid pathway.
    Hilton MD; Alaeddinoglu NG; Demain AL
    J Bacteriol; 1988 Jan; 170(1):482-4. PubMed ID: 3121591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dihydrophenylalanine: a prephenate-derived Photorhabdus luminescens antibiotic and intermediate in dihydrostilbene biosynthesis.
    Crawford JM; Mahlstedt SA; Malcolmson SJ; Clardy J; Walsh CT
    Chem Biol; 2011 Sep; 18(9):1102-12. PubMed ID: 21944749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylalanine biosynthesis in Arabidopsis thaliana. Identification and characterization of arogenate dehydratases.
    Cho MH; Corea OR; Yang H; Bedgar DL; Laskar DD; Anterola AM; Moog-Anterola FA; Hood RL; Kohalmi SE; Bernards MA; Kang C; Davin LB; Lewis NG
    J Biol Chem; 2007 Oct; 282(42):30827-35. PubMed ID: 17726025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains.
    Steinborn G; Hajirezaei MR; Hofemeister J
    Arch Microbiol; 2005 Feb; 183(2):71-9. PubMed ID: 15609023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional insights into the role of a cupin superfamily isomerase in the biosynthesis of Choi moiety of aeruginosin.
    Qiu X; Zhu W; Wang W; Jin H; Zhu P; Zhuang R; Yan X
    J Struct Biol; 2019 Mar; 205(3):44-52. PubMed ID: 30742895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three different classes of aminotransferases evolved prephenate aminotransferase functionality in arogenate-competent microorganisms.
    Graindorge M; Giustini C; Kraut A; Moyet L; Curien G; Matringe M
    J Biol Chem; 2014 Feb; 289(6):3198-208. PubMed ID: 24302739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and biochemical analysis of Bacillus anthracis prephenate dehydrogenase reveals an unusual mode of inhibition by tyrosine via the ACT domain.
    Shabalin IG; Gritsunov A; Hou J; Sławek J; Miks CD; Cooper DR; Minor W; Christendat D
    FEBS J; 2020 Jun; 287(11):2235-2255. PubMed ID: 31750992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single mutation alters the substrate specificity of L-amino acid ligase.
    Tsuda T; Asami M; Koguchi Y; Kojima S
    Biochemistry; 2014 Apr; 53(16):2650-60. PubMed ID: 24702628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic organization and mode of action of a novel bacteriocin, bacteriocin 51: determinant of VanA-type vancomycin-resistant Enterococcus faecium.
    Yamashita H; Tomita H; Inoue T; Ike Y
    Antimicrob Agents Chemother; 2011 Sep; 55(9):4352-60. PubMed ID: 21709077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The aromatic amino acid pathway branches at L-arogenate in Euglena gracilis.
    Byng GS; Whitaker RJ; Shapiro CL; Jensen RA
    Mol Cell Biol; 1981 May; 1(5):426-38. PubMed ID: 6152855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine metabolism: identification of a key residue in the acquisition of prephenate aminotransferase activity by 1β aspartate aminotransferase.
    Giustini C; Graindorge M; Cobessi D; Crouzy S; Robin A; Curien G; Matringe M
    FEBS J; 2019 Jun; 286(11):2118-2134. PubMed ID: 30771275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global regulatory systems operating in Bacilysin biosynthesis in Bacillus subtilis.
    Köroğlu TE; Oğülür I; Mutlu S; Yazgan-Karataş A; Ozcengiz G
    J Mol Microbiol Biotechnol; 2011; 20(3):144-55. PubMed ID: 21709425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and enzymatic characterization of BacD, an L-amino acid dipeptide ligase from Bacillus subtilis.
    Shomura Y; Hinokuchi E; Ikeda H; Senoo A; Takahashi Y; Saito J; Komori H; Shibata N; Yonetani Y; Higuchi Y
    Protein Sci; 2012 May; 21(5):707-16. PubMed ID: 22407814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.