These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20053531)

  • 41. Coronary tree extraction using motion layer separation.
    Zhang W; Ling H; Prummer S; Zhou KS; Ostermeier M; Comaniciu D
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):116-23. PubMed ID: 20425978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finding similar 2D X-ray coronary angiograms.
    Syeda-Mahmood T; Wang F; Kumar R; Beymer D; Zhang Y; Lundstrom R; McNulty E
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):501-8. PubMed ID: 23286168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Model-guided extraction of coronary vessel structures in 2D X-ray angiograms.
    Sun SY; Wang P; Sun S; Chen T
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):594-602. PubMed ID: 25485428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interventional 4-D motion estimation and reconstruction of cardiac vasculature without motion periodicity assumption.
    Rohkohl C; Lauritsch G; Prümmer M; Hornegger J
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):132-9. PubMed ID: 20425980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of automated marker detection on in vivo volumetric stent reconstruction.
    Schoonenberg G; Lelong P; Florent R; Wink O; ter Haar Romeny B
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):87-94. PubMed ID: 18982593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches.
    Zheng Y; Tek H; Funka-Lea G
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):74-81. PubMed ID: 24505746
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coronary artery segmentation using geometric moments based tracking and snake-driven refinement.
    Chen K; Zhang Y; Pohl K; Syeda-Mahmood T; Song Z; Wong ST
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3133-7. PubMed ID: 21096589
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries.
    Florin C; Paragios N; Williams J
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):246-53. PubMed ID: 16685852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Three-dimensional moston estimation of coronary artery from single-plane cineangiogram sequences].
    Sun Z; Yu D; Huang J; Xie H; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):428-32. PubMed ID: 16706382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatio-temporal data fusion for 3D+T image reconstruction in cerebral angiography.
    Copeland AD; Mangoubi RS; Desai MN; Mitter SK; Malek AM
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1238-51. PubMed ID: 20172817
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A deformation tracking approach to 4D coronary artery tree reconstruction.
    Tsin Y; Kirchberg KJ; Lauritsch G; Xu C
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):68-75. PubMed ID: 20426097
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust semi-automated path extraction for visualising stenosis of the coronary arteries.
    Mueller D; Maeder A
    Comput Med Imaging Graph; 2008 Sep; 32(6):463-75. PubMed ID: 18603408
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep motion tracking from multiview angiographic image sequences for synchronization of cardiac phases.
    Song S; Du C; Liu X; Huang Y; Song H; Jiang Y; Ai D; Frangi AF; Wang Y; Yang J
    Phys Med Biol; 2019 Jan; 64(2):025018. PubMed ID: 30566907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coronary angiogram video compression adapted to medical imaging applications.
    Zaid AO; Abdessalem S; Mourali MS; Farhati A; Bouallègue A; Mechmeche R; Olivier C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():410-3. PubMed ID: 19162680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood flow and velocity estimation based on vessel transit time by combining 2D and 3D X-ray angiography.
    Bogunović H; Loncarić S
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):117-24. PubMed ID: 17354763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative analysis of synchrotron radiation intravenous angiographic images.
    Sarnelli A; Nemoz C; Elleaume H; Estève F; Bertrand B; Bravin A
    Phys Med Biol; 2005 Feb; 50(4):725-40. PubMed ID: 15773630
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D dynamic roadmapping for abdominal catheterizations.
    Bender F; Groher M; Khamene A; Wein W; Heibel TH; Navab N
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):668-75. PubMed ID: 18982662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Topological match method in 3D reconstruction of heart vessel].
    Lu P; Huang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):153-6, 162. PubMed ID: 21485204
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.
    Xiao R; Yang J; Goyal M; Liu Y; Wang Y
    Comput Math Methods Med; 2013; 2013():796342. PubMed ID: 24232461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformable models.
    Sarry L; Boire JY
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1341-51. PubMed ID: 11811834
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.