BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 20053671)

  • 21. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A.
    Runte M; Hüttenhofer A; Gross S; Kiefmann M; Horsthemke B; Buiting K
    Hum Mol Genet; 2001 Nov; 10(23):2687-700. PubMed ID: 11726556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased alternate splicing of Htr2c in a mouse model for Prader-Willi syndrome leads disruption of 5HT
    Garfield AS; Davies JR; Burke LK; Furby HV; Wilkinson LS; Heisler LK; Isles AR
    Mol Brain; 2016 Dec; 9(1):95. PubMed ID: 27931246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long noncoding RNAs with snoRNA ends.
    Yin QF; Yang L; Zhang Y; Xiang JF; Wu YW; Carmichael GG; Chen LL
    Mol Cell; 2012 Oct; 48(2):219-30. PubMed ID: 22959273
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size.
    Leung KN; Vallero RO; DuBose AJ; Resnick JL; LaSalle JM
    Hum Mol Genet; 2009 Nov; 18(22):4227-38. PubMed ID: 19656775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prader-Willi locus Snord116 RNA processing requires an active endogenous allele and neuron-specific splicing by Rbfox3/NeuN.
    Coulson RL; Powell WT; Yasui DH; Dileep G; Resnick J; LaSalle JM
    Hum Mol Genet; 2018 Dec; 27(23):4051-4060. PubMed ID: 30124848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid birth-and-death evolution of imprinted snoRNAs in the Prader-Willi syndrome locus: implications for neural development in Euarchontoglires.
    Zhang YJ; Yang JH; Shi QS; Zheng LL; Liu J; Zhou H; Zhang H; Qu LH
    PLoS One; 2014; 9(6):e100329. PubMed ID: 24945811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human box C/D snoRNA processing conservation across multiple cell types.
    Scott MS; Ono M; Yamada K; Endo A; Barton GJ; Lamond AI
    Nucleic Acids Res; 2012 Apr; 40(8):3676-88. PubMed ID: 22199253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular evolution of the HBII-52 snoRNA cluster.
    Nahkuri S; Taft RJ; Korbie DJ; Mattick JS
    J Mol Biol; 2008 Sep; 381(4):810-5. PubMed ID: 18616950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs.
    Vitali P; Basyuk E; Le Meur E; Bertrand E; Muscatelli F; Cavaillé J; Huttenhofer A
    J Cell Biol; 2005 Jun; 169(5):745-53. PubMed ID: 15939761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5',3'-terminal stem structure.
    Darzacq X; Kiss T
    Mol Cell Biol; 2000 Jul; 20(13):4522-31. PubMed ID: 10848579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel trypanosomatid small nucleolar RNAs that guide methylation: their genome organization, expression and potential use to direct specific methylation on target RNA molecules.
    Xu YX; Liu L; Michaeli S
    Isr Med Assoc J; 2000 Jul; 2 Suppl():58-62. PubMed ID: 10909419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions.
    Bazeley PS; Shepelev V; Talebizadeh Z; Butler MG; Fedorova L; Filatov V; Fedorov A
    Gene; 2008 Jan; 408(1-2):172-9. PubMed ID: 18160232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay.
    Cavaillé J
    Wiley Interdiscip Rev RNA; 2017 Jul; 8(4):. PubMed ID: 28296064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription.
    Newman DR; Kuhn JF; Shanab GM; Maxwell ES
    RNA; 2000 Jun; 6(6):861-79. PubMed ID: 10864044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing.
    Kishore S; Gruber AR; Jedlinski DJ; Syed AP; Jorjani H; Zavolan M
    Genome Biol; 2013 May; 14(5):R45. PubMed ID: 23706177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative processing as evolutionary mechanism for the origin of novel nonprotein coding RNAs.
    Mo D; Raabe CA; Reinhardt R; Brosius J; Rozhdestvensky TS
    Genome Biol Evol; 2013; 5(11):2061-71. PubMed ID: 24132753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Prader-Willi syndrome murine imprinting center is not involved in the spatio-temporal transcriptional regulation of the Necdin gene.
    Watrin F; Le Meur E; Roeckel N; Ripoche MA; Dandolo L; Muscatelli F
    BMC Genet; 2005 Jan; 6():1. PubMed ID: 15634360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader-Willi syndrome.
    Morabito MV; Abbas AI; Hood JL; Kesterson RA; Jacobs MM; Kump DS; Hachey DL; Roth BL; Emeson RB
    Neurobiol Dis; 2010 Aug; 39(2):169-80. PubMed ID: 20394819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reassessment of the involvement of Snord115 in the serotonin 2c receptor pathway in a genetically relevant mouse model.
    Hebras J; Marty V; Personnaz J; Mercier P; Krogh N; Nielsen H; Aguirrebengoa M; Seitz H; Pradere JP; Guiard BP; Cavaille J
    Elife; 2020 Oct; 9():. PubMed ID: 33016258
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.