BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 20053675)

  • 1. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit.
    López-Marqués RL; Poulsen LR; Hanisch S; Meffert K; Buch-Pedersen MJ; Jakobsen MK; Pomorski TG; Palmgren MG
    Mol Biol Cell; 2010 Mar; 21(5):791-801. PubMed ID: 20053675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase.
    Costa SR; Marek M; Axelsen KB; Theorin L; Pomorski TG; López-Marqués RL
    Biochem J; 2016 Jun; 473(11):1605-15. PubMed ID: 27048590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery.
    Bryde S; Hennrich H; Verhulst PM; Devaux PF; Lenoir G; Holthuis JC
    J Biol Chem; 2010 Dec; 285(52):40562-72. PubMed ID: 20961850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump.
    Puts CF; Holthuis JC
    Biochim Biophys Acta; 2009 Jul; 1791(7):603-11. PubMed ID: 19233312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATPase reaction cycle of P4-ATPases affects their transport from the endoplasmic reticulum.
    Tone T; Nakayama K; Takatsu H; Shin HW
    FEBS Lett; 2020 Feb; 594(3):412-423. PubMed ID: 31571211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lipid head group is the key element for substrate recognition by the P4 ATPase ALA2: a phosphatidylserine flippase.
    Theorin L; Faxén K; Sørensen DM; Migotti R; Dittmar G; Schiller J; Daleke DL; Palmgren M; López-Marqués RL; Günther Pomorski T
    Biochem J; 2019 Mar; 476(5):783-794. PubMed ID: 30755463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation.
    Poulsen LR; López-Marqués RL; McDowell SC; Okkeri J; Licht D; Schulz A; Pomorski T; Harper JF; Palmgren MG
    Plant Cell; 2008 Mar; 20(3):658-76. PubMed ID: 18344284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit.
    López-Marqués RL; Poulsen LR; Palmgren MG
    PLoS One; 2012; 7(4):e33042. PubMed ID: 22514601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P4 ATPases--the physiological relevance of lipid flipping transporters.
    Paulusma CC; Elferink RP
    FEBS Lett; 2010 Jul; 584(13):2708-16. PubMed ID: 20450914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc50p plays a vital role in the ATPase reaction cycle of the putative aminophospholipid transporter Drs2p.
    Lenoir G; Williamson P; Puts CF; Holthuis JC
    J Biol Chem; 2009 Jul; 284(27):17956-67. PubMed ID: 19411703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P4-ATPases: lipid flippases in cell membranes.
    Lopez-Marques RL; Theorin L; Palmgren MG; Pomorski TG
    Pflugers Arch; 2014 Jul; 466(7):1227-40. PubMed ID: 24077738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical role of the beta-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2.
    Coleman JA; Molday RS
    J Biol Chem; 2011 May; 286(19):17205-16. PubMed ID: 21454556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding P4-ATPase substrate interactions.
    Roland BP; Graham TR
    Crit Rev Biochem Mol Biol; 2016; 51(6):513-527. PubMed ID: 27696908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping functional interactions in a heterodimeric phospholipid pump.
    Puts CF; Panatala R; Hennrich H; Tsareva A; Williamson P; Holthuis JC
    J Biol Chem; 2012 Aug; 287(36):30529-40. PubMed ID: 22791719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic membranes: the multiple roles of P4 and P5 ATPases.
    López-Marqués RL; Davis JA; Harper JF; Palmgren M
    Plant Physiol; 2021 Apr; 185(3):619-631. PubMed ID: 33822217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of the Arabidopsis thaliana P₄-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development.
    McDowell SC; López-Marqués RL; Poulsen LR; Palmgren MG; Harper JF
    PLoS One; 2013; 8(5):e62577. PubMed ID: 23667493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking phospholipid flippases to vesicle-mediated protein transport.
    Muthusamy BP; Natarajan P; Zhou X; Graham TR
    Biochim Biophys Acta; 2009 Jul; 1791(7):612-9. PubMed ID: 19286470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P4-ATPases: how an old dog learnt new tricks - structure and mechanism of lipid flippases.
    Lyons JA; Timcenko M; Dieudonné T; Lenoir G; Nissen P
    Curr Opin Struct Biol; 2020 Aug; 63():65-73. PubMed ID: 32492637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transport mechanism of P4 ATPase lipid flippases.
    López-Marqués RL; Gourdon P; Günther Pomorski T; Palmgren M
    Biochem J; 2020 Oct; 477(19):3769-3790. PubMed ID: 33045059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.