These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 20053841)

  • 1. Bioinformatics challenges for genome-wide association studies.
    Moore JH; Asselbergs FW; Williams SM
    Bioinformatics; 2010 Feb; 26(4):445-55. PubMed ID: 20053841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies.
    Yu W; Yesupriya A; Wulf A; Hindorff LA; Dowling N; Khoury MJ; Gwinn M
    Eur J Hum Genet; 2011 Oct; 19(10):1095-9. PubMed ID: 21610748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-locus test conditional on confirmed effects leads to increased power in genome-wide association studies.
    Ma L; Han S; Yang J; Da Y
    PLoS One; 2010 Nov; 5(11):e15006. PubMed ID: 21103364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.
    Merelli I; Calabria A; Cozzi P; Viti F; Mosca E; Milanesi L
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S9. PubMed ID: 23369106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GWAS analyzer: integrating genotype, phenotype and public annotation data for genome-wide association study analysis.
    Fong C; Ko DC; Wasnick M; Radey M; Miller SI; Brittnacher M
    Bioinformatics; 2010 Feb; 26(4):560-4. PubMed ID: 20053839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association studies--data generation, storage, interpretation, and bioinformatics.
    Pare G
    J Cardiovasc Transl Res; 2010 Jun; 3(3):183-8. PubMed ID: 20560038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biostatistical aspects of genome-wide association studies.
    Ziegler A; König IR; Thompson JR
    Biom J; 2008 Feb; 50(1):8-28. PubMed ID: 18217698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new permutation strategy of pathway-based approach for genome-wide association study.
    Guo YF; Li J; Chen Y; Zhang LS; Deng HW
    BMC Bioinformatics; 2009 Dec; 10():429. PubMed ID: 20021635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality control, imputation and analysis of genome-wide genotyping data from the Illumina HumanCoreExome microarray.
    Coleman JR; Euesden J; Patel H; Folarin AA; Newhouse S; Breen G
    Brief Funct Genomics; 2016 Jul; 15(4):298-304. PubMed ID: 26443613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting two-locus associations allowing for interactions in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Oct; 26(20):2517-25. PubMed ID: 20736343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HapBoost: a fast approach to boosting haplotype association analyses in genome-wide association studies.
    Wan X; Yang C; Yang Q; Zhao H; Yu W
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):207-12. PubMed ID: 23702557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide association study (GWAS) data with existing genomic resources.
    Ramos EM; Hoffman D; Junkins HA; Maglott D; Phan L; Sherry ST; Feolo M; Hindorff LA
    Eur J Hum Genet; 2014 Jan; 22(1):144-7. PubMed ID: 23695286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pursuit of genome-wide association studies: where are we now?
    Ku CS; Loy EY; Pawitan Y; Chia KS
    J Hum Genet; 2010 Apr; 55(4):195-206. PubMed ID: 20300123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for pathway analysis from GWAS data.
    Yaspan BL; Veatch OJ
    Curr Protoc Hum Genet; 2011 Oct; Chapter 1():Unit1.20. PubMed ID: 21975938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing statistical significance in multivariable genome wide association analysis.
    Buzdugan L; Kalisch M; Navarro A; Schunk D; Fehr E; Bühlmann P
    Bioinformatics; 2016 Jul; 32(13):1990-2000. PubMed ID: 27153677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.