BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20053925)

  • 1. Stimulation of neuronal KATP channels by cGMP-dependent protein kinase: involvement of ROS and 5-hydroxydecanoate-sensitive factors in signal transduction.
    Chai Y; Lin YF
    Am J Physiol Cell Physiol; 2010 Apr; 298(4):C875-92. PubMed ID: 20053925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual regulation of the ATP-sensitive potassium channel by activation of cGMP-dependent protein kinase.
    Chai Y; Lin YF
    Pflugers Arch; 2008 Aug; 456(5):897-915. PubMed ID: 18231807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of cGMP-dependent protein kinase stimulates cardiac ATP-sensitive potassium channels via a ROS/calmodulin/CaMKII signaling cascade.
    Chai Y; Zhang DM; Lin YF
    PLoS One; 2011 Mar; 6(3):e18191. PubMed ID: 21479273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP-sensitive potassium channels by nitric oxide in ventricular cardiomyocytes.
    Zhang DM; Chai Y; Erickson JR; Brown JH; Bers DM; Lin YF
    J Physiol; 2014 Mar; 592(5):971-90. PubMed ID: 24277866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation.
    Kawano T; Zoga V; Kimura M; Liang MY; Wu HE; Gemes G; McCallum JB; Kwok WM; Hogan QH; Sarantopoulos CD
    Mol Pain; 2009 Mar; 5():12. PubMed ID: 19284878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual regulation of the ATP-sensitive potassium channel by caffeine.
    Mao X; Chai Y; Lin YF
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2239-58. PubMed ID: 17303650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK.
    Xu Z; Ji X; Boysen PG
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1433-40. PubMed ID: 14656708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes.
    Han J; Kim N; Joo H; Kim E; Earm YE
    Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1545-54. PubMed ID: 12234808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
    Pratt EB; Tewson P; Bruederle CE; Skach WR; Shyng SL
    J Gen Physiol; 2011 Mar; 137(3):299-314. PubMed ID: 21321069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating ATP-sensitive potassium channels.
    Kong DW; Du LD; Liu RZ; Yuan TY; Wang SB; Wang YH; Lu Y; Fang LH; Du GH
    Acta Pharmacol Sin; 2024 Mar; 45(3):480-489. PubMed ID: 37993535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1.
    Proks P; de Wet H; Ashcroft FM
    J Gen Physiol; 2010 Oct; 136(4):389-405. PubMed ID: 20876358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pinacidil, a KATP channel opener, stimulates cardiac Na
    Iguchi K; Saotome M; Yamashita K; Hasan P; Sasaki M; Maekawa Y; Watanabe Y
    Naunyn Schmiedebergs Arch Pharmacol; 2019 Aug; 392(8):949-959. PubMed ID: 30919008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered interaction between SUR1 and Kir6.2 that enhances ATP sensitivity in KATP channels.
    Pratt EB; Zhou Q; Gay JW; Shyng SL
    J Gen Physiol; 2012 Aug; 140(2):175-87. PubMed ID: 22802363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection.
    Oldenburg O; Qin Q; Krieg T; Yang XM; Philipp S; Critz SD; Cohen MV; Downey JM
    Am J Physiol Heart Circ Physiol; 2004 Jan; 286(1):H468-76. PubMed ID: 12958031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS.
    Philipp S; Cui L; Ludolph B; Kelm M; Schulz R; Cohen MV; Downey JM
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H450-7. PubMed ID: 16155105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Kv3 potassium channels expressed in CHO cells by a nitric oxide-activated phosphatase.
    Moreno H; Vega-Saenz de Miera E; Nadal MS; Amarillo Y; Rudy B
    J Physiol; 2001 Feb; 530(Pt 3):345-58. PubMed ID: 11281123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells.
    Nam YJ; Lee DH; Lee MS; Lee CS
    Eur J Pharmacol; 2015 Oct; 764():582-591. PubMed ID: 26142827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the mechanism of metabolic regulation of ATP-sensitive K+ channels containing Kir6.1 and Kir6.2 subunits.
    Farzaneh T; Tinker A
    Cardiovasc Res; 2008 Sep; 79(4):621-31. PubMed ID: 18522960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholine leads to free radical production dependent on K(ATP) channels, G(i) proteins, phosphatidylinositol 3-kinase and tyrosine kinase.
    Oldenburg O; Qin Q; Sharma AR; Cohen MV; Downey JM; Benoit JN
    Cardiovasc Res; 2002 Aug; 55(3):544-52. PubMed ID: 12160951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.