These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 20053973)
21. Deamidation of Human γS-Crystallin Increases Attractive Protein Interactions: Implications for Cataract. Pande A; Mokhor N; Pande J Biochemistry; 2015 Aug; 54(31):4890-9. PubMed ID: 26158710 [TBL] [Abstract][Full Text] [Related]
22. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175 [TBL] [Abstract][Full Text] [Related]
23. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
24. Age-dependent deamidation of glutamine residues in human γS crystallin: deamidation and unstructured regions. Hooi MY; Raftery MJ; Truscott RJ Protein Sci; 2012 Jul; 21(7):1074-9. PubMed ID: 22593035 [TBL] [Abstract][Full Text] [Related]
25. Post-translational modifications of water-soluble human lens crystallins from young adults. Miesbauer LR; Zhou X; Yang Z; Yang Z; Sun Y; Smith DL; Smith JB J Biol Chem; 1994 Apr; 269(17):12494-502. PubMed ID: 8175657 [TBL] [Abstract][Full Text] [Related]
26. The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. Hanson SR; Hasan A; Smith DL; Smith JB Exp Eye Res; 2000 Aug; 71(2):195-207. PubMed ID: 10930324 [TBL] [Abstract][Full Text] [Related]
27. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography. Pereira PC; Ramalho JS; Faro CJ; Mota MC Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432 [TBL] [Abstract][Full Text] [Related]
28. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. Wenke JL; Rose KL; Spraggins JM; Schey KL Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7398-405. PubMed ID: 26574799 [TBL] [Abstract][Full Text] [Related]
29. The etiology of human age-related cataract. Proteins don't last forever. Truscott RJ; Friedrich MG Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):192-8. PubMed ID: 26318017 [TBL] [Abstract][Full Text] [Related]
30. Quantitative measurement of deamidation in lens betaB2-crystallin and peptides by direct electrospray injection and fragmentation in a Fourier transform mass spectrometer. Robinson NE; Lampi KJ; McIver RT; Williams RH; Muster WC; Kruppa G; Robinson AB Mol Vis; 2005 Dec; 11():1211-9. PubMed ID: 16402021 [TBL] [Abstract][Full Text] [Related]
31. One-shot LC-MS/MS analysis of post-translational modifications including oxidation and deamidation of rat lens α- and β-crystallins induced by γ-irradiation. Kim I; Saito T; Fujii N; Kanamoto T; Fujii N Amino Acids; 2016 Dec; 48(12):2855-2866. PubMed ID: 27600614 [TBL] [Abstract][Full Text] [Related]
32. Phosphoproteomics characterization of novel phosphorylated sites of lens proteins from normal and cataractous human eye lenses. Huang CH; Wang YT; Tsai CF; Chen YJ; Lee JS; Chiou SH Mol Vis; 2011 Jan; 17():186-98. PubMed ID: 21264232 [TBL] [Abstract][Full Text] [Related]
33. Modifications of the water-insoluble human lens alpha-crystallins. Lund AL; Smith JB; Smith DL Exp Eye Res; 1996 Dec; 63(6):661-72. PubMed ID: 9068373 [TBL] [Abstract][Full Text] [Related]
34. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging. Norton-Baker B; Mehrabi P; Kwok AO; Roskamp KW; Rocha MA; Sprague-Piercy MA; von Stetten D; Miller RJD; Martin RW Structure; 2022 May; 30(5):763-776.e4. PubMed ID: 35338852 [TBL] [Abstract][Full Text] [Related]
35. Mechanism of asparagine deamidation during human senile cataractogenesis. Takemoto L; Fujii N; Boyle D Exp Eye Res; 2001 May; 72(5):559-63. PubMed ID: 11311047 [TBL] [Abstract][Full Text] [Related]
36. Identification of crystallin modifications in the human lens cortex and nucleus using laser capture microdissection and CyDye labeling. Asomugha CO; Gupta R; Srivastava OP Mol Vis; 2010 Mar; 16():476-94. PubMed ID: 20352024 [TBL] [Abstract][Full Text] [Related]
37. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
38. EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses. Boyle DL; Takemoto L Curr Eye Res; 1996 May; 15(5):577-82. PubMed ID: 8670759 [TBL] [Abstract][Full Text] [Related]
39. A rapid, comprehensive liquid chromatography-mass spectrometry (LC-MS)-based survey of the Asp isomers in crystallins from human cataract lenses. Fujii N; Sakaue H; Sasaki H; Fujii N J Biol Chem; 2012 Nov; 287(47):39992-40002. PubMed ID: 23007399 [TBL] [Abstract][Full Text] [Related]
40. Quantification of thioether-linked glutathione modifications in human lens proteins. Wang Z; Schey KL Exp Eye Res; 2018 Oct; 175():83-89. PubMed ID: 29879394 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]