These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20053973)

  • 41. Age-dependent deamidation of the major intrinsic polypeptide from lens membranes.
    Takemoto L; Emmons T
    Curr Eye Res; 1991 Sep; 10(9):865-9. PubMed ID: 1790716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses.
    Fujii N; Takemoto LJ; Matsumoto S; Hiroki K; Boyle D; Akaboshi M
    Biochem Biophys Res Commun; 2000 Nov; 278(2):408-13. PubMed ID: 11097850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous stereoinversion and isomerization at the Asp-4 residue in βB2-crystallin from the aged human eye lenses.
    Fujii N; Kawaguchi T; Sasaki H; Fujii N
    Biochemistry; 2011 Oct; 50(40):8628-35. PubMed ID: 21877723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of the in vivo deamidation rate of asparagine-101 from alpha-A crystallin using microdissected sections of the aging human lens.
    Takemoto L; Boyle D
    Exp Eye Res; 1998 Jul; 67(1):119-20. PubMed ID: 9702185
    [No Abstract]   [Full Text] [Related]  

  • 45. The Proteome of Cataract Markers: Focus on Crystallins.
    Zhang K; Zhu X; Lu Y
    Adv Clin Chem; 2018; 86():179-210. PubMed ID: 30144840
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Racemization of aspartyl residues in proteins from normal and cataractous human lenses: an aging process without involvement in cataract formation.
    van den Oetelaar PJ; Hoenders HJ
    Exp Eye Res; 1989 Feb; 48(2):209-14. PubMed ID: 2924808
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Imaging Cataract-Specific Peptides in Human Lenses.
    Schey KL; Wang Z; Rose KL; Anderson DMG
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of human lens major intrinsic protein structure.
    Schey KL; Little M; Fowler JG; Crouch RK
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):175-82. PubMed ID: 10634618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered Protein Dynamics and Increased Aggregation of Human γS-Crystallin Due to Cataract-Associated Deamidations.
    Forsythe HM; Vetter CJ; Jara KA; Reardon PN; David LL; Barbar EJ; Lampi KJ
    Biochemistry; 2019 Oct; 58(40):4112-4124. PubMed ID: 31490062
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Age-dependent deamidation of alpha B-crystallin.
    Groenen PJ; van Dongen MJ; Voorter CE; Bloemendal H; de Jong WW
    FEBS Lett; 1993 May; 322(1):69-72. PubMed ID: 8482371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y; Bi H; Li N; Jin H; Yang P; Kong X; Yan S; Lu Y
    Mol Vis; 2010 Jun; 16():1068-75. PubMed ID: 20596256
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Post-translational modifications in the nuclear region of young, aged, and cataract human lenses.
    Hains PG; Truscott RJ
    J Proteome Res; 2007 Oct; 6(10):3935-43. PubMed ID: 17824632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the Most Impactful Asparagine Residues for γS-Crystallin Aggregation by Deamidation.
    Kato K; Nakayoshi T; Kitamura Y; Kurimoto E; Oda A; Ishikawa Y
    Biochemistry; 2023 Jun; 62(11):1679-1688. PubMed ID: 37155656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T; Wong R; Takemoto L
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lens aging: effects of crystallins.
    Sharma KK; Santhoshkumar P
    Biochim Biophys Acta; 2009 Oct; 1790(10):1095-108. PubMed ID: 19463898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses.
    Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alteration of crystallin polypeptides in rat lenses during the development of galactose-induced cataract.
    Zhao H; Ren X
    Yan Ke Xue Bao; 1993 Sep; 9(3):143-5. PubMed ID: 8168609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.