BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1119 related articles for article (PubMed ID: 20054297)

  • 1. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
    Dalgliesh GL; Furge K; Greenman C; Chen L; Bignell G; Butler A; Davies H; Edkins S; Hardy C; Latimer C; Teague J; Andrews J; Barthorpe S; Beare D; Buck G; Campbell PJ; Forbes S; Jia M; Jones D; Knott H; Kok CY; Lau KW; Leroy C; Lin ML; McBride DJ; Maddison M; Maguire S; McLay K; Menzies A; Mironenko T; Mulderrig L; Mudie L; O'Meara S; Pleasance E; Rajasingham A; Shepherd R; Smith R; Stebbings L; Stephens P; Tang G; Tarpey PS; Turrell K; Dykema KJ; Khoo SK; Petillo D; Wondergem B; Anema J; Kahnoski RJ; Teh BT; Stratton MR; Futreal PA
    Nature; 2010 Jan; 463(7279):360-3. PubMed ID: 20054297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C.
    Niu X; Zhang T; Liao L; Zhou L; Lindner DJ; Zhou M; Rini B; Yan Q; Yang H
    Oncogene; 2012 Feb; 31(6):776-86. PubMed ID: 21725364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma.
    Gossage L; Murtaza M; Slatter AF; Lichtenstein CP; Warren A; Haynes B; Marass F; Roberts I; Shanahan SJ; Claas A; Dunham A; May AP; Rosenfeld N; Forshew T; Eisen T
    Genes Chromosomes Cancer; 2014 Jan; 53(1):38-51. PubMed ID: 24166983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer.
    Liao L; Testa JR; Yang H
    Cancer Genet; 2015 May; 208(5):206-14. PubMed ID: 25873528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC.
    Ibragimova I; Maradeo ME; Dulaimi E; Cairns P
    Epigenetics; 2013 May; 8(5):486-93. PubMed ID: 23644518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cancer driver genes IDH1/2, JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism.
    Chang S; Yim S; Park H
    Exp Mol Med; 2019 Jun; 51(6):1-17. PubMed ID: 31221981
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Su X; Zhang J; Mouawad R; Compérat E; Rouprêt M; Allanic F; Parra J; Bitker MO; Thompson EJ; Gowrishankar B; Houldsworth J; Weinstein JN; Tost J; Broom BM; Khayat D; Spano JP; Tannir NM; Malouf GG
    Cancer Res; 2017 Sep; 77(18):4835-4845. PubMed ID: 28754676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma.
    Varela I; Tarpey P; Raine K; Huang D; Ong CK; Stephens P; Davies H; Jones D; Lin ML; Teague J; Bignell G; Butler A; Cho J; Dalgliesh GL; Galappaththige D; Greenman C; Hardy C; Jia M; Latimer C; Lau KW; Marshall J; McLaren S; Menzies A; Mudie L; Stebbings L; Largaespada DA; Wessels LF; Richard S; Kahnoski RJ; Anema J; Tuveson DA; Perez-Mancera PA; Mustonen V; Fischer A; Adams DJ; Rust A; Chan-on W; Subimerb C; Dykema K; Furge K; Campbell PJ; Teh BT; Stratton MR; Futreal PA
    Nature; 2011 Jan; 469(7331):539-42. PubMed ID: 21248752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer.
    Rondinelli B; Rosano D; Antonini E; Frenquelli M; Montanini L; Huang D; Segalla S; Yoshihara K; Amin SB; Lazarevic D; The BT; Verhaak RG; Futreal PA; Di Croce L; Chin L; Cittaro D; Tonon G
    J Clin Invest; 2015 Dec; 125(12):4625-37. PubMed ID: 26551685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations.
    Karlo CA; Di Paolo PL; Chaim J; Hakimi AA; Ostrovnaya I; Russo P; Hricak H; Motzer R; Hsieh JJ; Akin O
    Radiology; 2014 Feb; 270(2):464-71. PubMed ID: 24029645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Biomarkers of a Randomized Trial Comparing First-line Everolimus and Sunitinib in Patients with Metastatic Renal Cell Carcinoma.
    Hsieh JJ; Chen D; Wang PI; Marker M; Redzematovic A; Chen YB; Selcuklu SD; Weinhold N; Bouvier N; Huberman KH; Bhanot U; Chevinsky MS; Patel P; Pinciroli P; Won HH; You D; Viale A; Lee W; Hakimi AA; Berger MF; Socci ND; Cheng EH; Knox J; Voss MH; Voi M; Motzer RJ
    Eur Urol; 2017 Mar; 71(3):405-414. PubMed ID: 27751729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12.
    González-Rodríguez P; Engskog-Vlachos P; Zhang H; Murgoci AN; Zerdes I; Joseph B
    Cell Death Dis; 2020 Jan; 11(1):69. PubMed ID: 31988284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies.
    Piva F; Santoni M; Matrana MR; Satti S; Giulietti M; Occhipinti G; Massari F; Cheng L; Lopez-Beltran A; Scarpelli M; Principato G; Cascinu S; Montironi R
    Expert Rev Mol Diagn; 2015; 15(9):1201-10. PubMed ID: 26166446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetics of clear-cell renal cell carcinoma.
    Brugarolas J
    J Clin Oncol; 2014 Jun; 32(18):1968-76. PubMed ID: 24821879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects.
    Simon JM; Hacker KE; Singh D; Brannon AR; Parker JS; Weiser M; Ho TH; Kuan PF; Jonasch E; Furey TS; Prins JF; Lieb JD; Rathmell WK; Davis IJ
    Genome Res; 2014 Feb; 24(2):241-50. PubMed ID: 24158655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma.
    Bihr S; Ohashi R; Moore AL; Rüschoff JH; Beisel C; Hermanns T; Mischo A; Corrò C; Beyer J; Beerenwinkel N; Moch H; Schraml P
    Neoplasia; 2019 Feb; 21(2):247-256. PubMed ID: 30660076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of SETD2, but not H3K36me3, correlates with aggressive clinicopathological features of clear cell renal cell carcinoma patients.
    Liu L; Guo R; Zhang X; Liang Y; Kong F; Wang J; Xu Z
    Biosci Trends; 2017 May; 11(2):214-220. PubMed ID: 28260718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development.
    Duns G; Hofstra RM; Sietzema JG; Hollema H; van Duivenbode I; Kuik A; Giezen C; Jan O; Bergsma JJ; Bijnen H; van der Vlies P; van den Berg E; Kok K
    Hum Mutat; 2012 Jul; 33(7):1059-62. PubMed ID: 22461374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SETDB2 and RIOX2 are differentially expressed among renal cell tumor subtypes, associating with prognosis and metastization.
    Ferreira MJ; Pires-Luís AS; Vieira-Coimbra M; Costa-Pinheiro P; Antunes L; Dias PC; Lobo F; Oliveira J; Gonçalves CS; Costa BM; Henrique R; Jerónimo C
    Epigenetics; 2017; 12(12):1057-1064. PubMed ID: 29099276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma.
    Piva F; Giulietti M; Occhipinti G; Santoni M; Massari F; Sotte V; Iacovelli R; Burattini L; Santini D; Montironi R; Cascinu S; Principato G
    Oncotarget; 2015 Oct; 6(31):32161-8. PubMed ID: 26452128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.