These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20055439)

  • 21. Gold nanoparticles in biology: beyond toxicity to cellular imaging.
    Murphy CJ; Gole AM; Stone JW; Sisco PN; Alkilany AM; Goldsmith EC; Baxter SC
    Acc Chem Res; 2008 Dec; 41(12):1721-30. PubMed ID: 18712884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks.
    Kosiorek A; Kandulski W; Glaczynska H; Giersig M
    Small; 2005 Apr; 1(4):439-44. PubMed ID: 17193469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure.
    Tamura M; Iida T; Setoura K
    Nanoscale; 2022 Sep; 14(35):12589-12594. PubMed ID: 35968839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres.
    Rodríguez-Fernández J; Funston AM; Pérez-Juste J; Alvarez-Puebla RA; Liz-Marzán LM; Mulvaney P
    Phys Chem Chem Phys; 2009 Jul; 11(28):5909-14. PubMed ID: 19588012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions.
    Retsch M; Tamm M; Bocchio N; Horn N; Förch R; Jonas U; Kreiter M
    Small; 2009 Sep; 5(18):2105-10. PubMed ID: 19499533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures.
    Alabastri A; Malerba M; Calandrini E; Manjavacas A; De Angelis F; Toma A; Proietti Zaccaria R
    Nano Lett; 2017 Sep; 17(9):5472-5480. PubMed ID: 28759244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microlens formation in microgel/gold colloid composite materials via photothermal patterning.
    Jones CD; Serpe MJ; Schroeder L; Lyon LA
    J Am Chem Soc; 2003 May; 125(18):5292-3. PubMed ID: 12720438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.
    Mhaisekar A; Kazmierczak MJ; Banerjee R
    J Synchrotron Radiat; 2005 May; 12(Pt 3):318-28. PubMed ID: 15840917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping heat origin in plasmonic structures.
    Baffou G; Girard C; Quidant R
    Phys Rev Lett; 2010 Apr; 104(13):136805. PubMed ID: 20481904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles.
    Fedoruk M; Meixner M; Carretero-Palacios S; Lohmüller T; Feldmann J
    ACS Nano; 2013 Sep; 7(9):7648-53. PubMed ID: 23941522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photothermal Microscopy of Coupled Nanostructures and the Impact of Nanoscale Heating in Surface Enhanced Raman Spectroscopy.
    Zeng ZC; Wang H; Johns P; Hartland GV; Schultz ZD
    J Phys Chem C Nanomater Interfaces; 2017 Jun; 121(21):11623-11631. PubMed ID: 28736586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal design of nanoplasmonic materials using genetic algorithms as a multiparameter optimization tool.
    Yelk J; Sukharev M; Seideman T
    J Chem Phys; 2008 Aug; 129(6):064706. PubMed ID: 18715101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature distributions within zeolite precursor solutions in the presence of microwaves.
    Gharibeh M; Tompsett G; Lu F; Auerbach SM; Yngvesson KS; Conner WC
    J Phys Chem B; 2009 Sep; 113(37):12506-20. PubMed ID: 19469480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanosolids, slushes, and nanoliquids: characterization of nanophases in metal clusters and nanoparticles.
    Li ZH; Truhlar DG
    J Am Chem Soc; 2008 Sep; 130(38):12698-711. PubMed ID: 18729357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive subwavelength control of nano-optical fields.
    Aeschlimann M; Bauer M; Bayer D; Brixner T; García de Abajo FJ; Pfeiffer W; Rohmer M; Spindler C; Steeb F
    Nature; 2007 Mar; 446(7133):301-4. PubMed ID: 17361179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.