These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20055439)

  • 41. Low-loss plasmonic waveguide based on gain-assisted periodic metal nanosphere chains.
    Zhang H; Ho HP
    Opt Express; 2010 Oct; 18(22):23035-40. PubMed ID: 21164644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial Control of Heat Flow at the Nanoscale Using Janus Particles.
    Olarte-Plata JD; Gabriel J; Albella P; Bresme F
    ACS Nano; 2022 Jan; 16(1):694-709. PubMed ID: 34918910
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices.
    Leroux YR; Lacroix JC; Chane-Ching KI; Fave C; Félidj N; Lévi G; Aubard J; Krenn JR; Hohenau A
    J Am Chem Soc; 2005 Nov; 127(46):16022-3. PubMed ID: 16287278
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures.
    Zhang X; Liu H; Feng S
    Nanotechnology; 2009 Oct; 20(42):425303. PubMed ID: 19779226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.
    Duda Y; Vázquez F
    Langmuir; 2005 Feb; 21(3):1096-102. PubMed ID: 15667196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmonic activity on gold nanoparticles embedded in nanopores formed in a surface layer of silica glass by swift-heavy-ion irradiation.
    Nomura K; Ohki Y; Fujimaki M; Wang X; Awazu K; Komatsubara T
    Nanotechnology; 2009 Nov; 20(47):475306. PubMed ID: 19875873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Heat generation, accumulation and dissipation in clusters of the aggregated insects].
    Es'kov EK; Toboev VA
    Zh Obshch Biol; 2009; 70(2):110-20. PubMed ID: 19425349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoscale modeling of electro-plasmonic tunable devices for modulators and metasurfaces.
    Riedel CA; Sun K; Muskens OL; de Groot CH
    Opt Express; 2017 May; 25(9):10031-10043. PubMed ID: 28468370
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon-assisted optofluidics.
    Donner JS; Baffou G; McCloskey D; Quidant R
    ACS Nano; 2011 Jul; 5(7):5457-62. PubMed ID: 21657203
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles.
    Urban AS; Fedoruk M; Horton MR; Rädler JO; Stefani FD; Feldmann J
    Nano Lett; 2009 Aug; 9(8):2903-8. PubMed ID: 19719109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation.
    Baldwin CL; Bigelow NW; Masiello DJ
    J Phys Chem Lett; 2014 Apr; 5(8):1347-54. PubMed ID: 26269978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative study of the photothermal properties of metallic nanowire networks.
    Bell AP; Fairfield JA; McCarthy EK; Mills S; Boland JJ; Baffou G; McCloskey D
    ACS Nano; 2015 May; 9(5):5551-8. PubMed ID: 25938797
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermal imaging of nanostructures by quantitative optical phase analysis.
    Baffou G; Bon P; Savatier J; Polleux J; Zhu M; Merlin M; Rigneault H; Monneret S
    ACS Nano; 2012 Mar; 6(3):2452-8. PubMed ID: 22305011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic visualization of photothermal heating by gold nanocages using thermoresponsive elastin like polypeptides.
    Cheemalapati S; Ladanov M; Pang B; Yuan Y; Koria P; Xia Y; Pyayt A
    Nanoscale; 2016 Dec; 8(45):18912-18920. PubMed ID: 27714072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light-induced electronic non-equilibrium in plasmonic particles.
    Kornbluth M; Nitzan A; Seideman T
    J Chem Phys; 2013 May; 138(17):174707. PubMed ID: 23656152
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Designing materials for plasmonic systems: the alkali-noble intermetallics.
    Blaber MG; Arnold MD; Ford MJ
    J Phys Condens Matter; 2010 Mar; 22(9):095501. PubMed ID: 21389416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Power delivery and self-heating in nanoscale near field transducer for heat-assisted magnetic recording.
    Zhou N; Traverso LM; Xu X
    Nanotechnology; 2015 Mar; 26(13):134001. PubMed ID: 25759907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoconfined water vapour as a probe to evaluate plasmonic heating.
    Chehadi Z; Boissière C; Chanéac C; Faustini M
    Nanoscale; 2020 Jul; 12(25):13368-13376. PubMed ID: 32373825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers.
    Han F; Armstrong T; Andres-Arroyo A; Bennett D; Soeriyadi A; Alinezhad Chamazketi A; Bakthavathsalam P; Tilley RD; Gooding JJ; Reece PJ
    Nanoscale; 2020 Jan; 12(3):1680-1687. PubMed ID: 31894817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.