These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 20055681)

  • 1. Complex fluids: probing mechanical properties of biological systems with optical tweezers.
    Ou-Yang HD; Wei MT
    Annu Rev Phys Chem; 2010; 61():421-40. PubMed ID: 20055681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using optical tweezers to study the fine details of myosin ATPase mechanochemical cycle.
    Batters C; Veigel C
    Methods Mol Biol; 2011; 778():97-109. PubMed ID: 21809202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers.
    Greenberg MJ; Shuman H; Ostap EM
    Methods Mol Biol; 2017; 1486():483-509. PubMed ID: 27844441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers.
    Ketelaar T; van der Honing HS; Emons AM
    Biochem Soc Trans; 2010 Jun; 38(3):823-8. PubMed ID: 20491670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic F-actin cortex models.
    Haraszti T; Clemen AE; Spatz JP
    Chemphyschem; 2009 Nov; 10(16):2777-86. PubMed ID: 19821475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force Spectroscopy in Studying Infection.
    Zhou Z; Leake MC
    Adv Exp Med Biol; 2016; 915():307-27. PubMed ID: 27193551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Speed Optical Tweezers for the Study of Single Molecular Motors.
    Gardini L; Tempestini A; Pavone FS; Capitanio M
    Methods Mol Biol; 2018; 1805():151-184. PubMed ID: 29971718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical tweezers to study viruses.
    Arias-Gonzalez JR
    Subcell Biochem; 2013; 68():273-304. PubMed ID: 23737055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of viruses.
    de Pablo PJ; Mateu MG
    Subcell Biochem; 2013; 68():519-51. PubMed ID: 23737064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbinding force of a single motor molecule of muscle measured using optical tweezers.
    Nishizaka T; Miyata H; Yoshikawa H; Ishiwata S; Kinosita K
    Nature; 1995 Sep; 377(6546):251-4. PubMed ID: 7675112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical force characterization in manipulating live cells with optical tweezers.
    Wu Y; Sun D; Huang W
    J Biomech; 2011 Feb; 44(4):741-6. PubMed ID: 21087769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Speed Optical Traps Address Dynamics of Processive and Non-Processive Molecular Motors.
    Gardini L; Woody MS; Kashchuk AV; Goldman YE; Ostap EM; Capitanio M
    Methods Mol Biol; 2022; 2478():513-557. PubMed ID: 36063333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buckling of actin-coated membranes under application of a local force.
    Helfer E; Harlepp S; Bourdieu L; Robert J; MacKintosh FC; Chatenay D
    Phys Rev Lett; 2001 Aug; 87(8):088103. PubMed ID: 11497985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting Mechanoenzymatic Properties of Processive Myosins with Ultrafast Force-Clamp Spectroscopy.
    Gardini L; Kashchuk AV; Pavone FS; Capitanio M
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34279513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Response of Actin Bundles under Mechanical Stress.
    Rückerl F; Lenz M; Betz T; Manzi J; Martiel JL; Safouane M; Paterski-Boujemaa R; Blanchoin L; Sykes C
    Biophys J; 2017 Sep; 113(5):1072-1079. PubMed ID: 28877490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes.
    Barnhart E; Lee KC; Allen GM; Theriot JA; Mogilner A
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5045-50. PubMed ID: 25848042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.
    Steffen W; Sleep J
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1857-65. PubMed ID: 15647161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The working stroke upon myosin-nucleotide complexes binding to actin.
    Steffen W; Smith D; Sleep J
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6434-9. PubMed ID: 12750465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.