BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20056176)

  • 1. Proteomics of trypanosomatids of human medical importance.
    Cuervo P; Domont GB; De Jesus JB
    J Proteomics; 2010 Mar; 73(5):845-67. PubMed ID: 20056176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics advances in the study of Leishmania parasites and leishmaniasis.
    de Jesus JB; Mesquita-Rodrigues C; Cuervo P
    Subcell Biochem; 2014; 74():323-49. PubMed ID: 24264252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Proteomic Analysis of Lysine Acetylation in Trypanosomes.
    Moretti NS; Cestari I; Anupama A; Stuart K; Schenkman S
    J Proteome Res; 2018 Jan; 17(1):374-385. PubMed ID: 29168382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Of Drugs and Trypanosomatids: New Tools and Knowledge to Reduce Bottlenecks in Drug Discovery.
    Bhattacharya A; Corbeil A; do Monte-Neto RL; Fernandez-Prada C
    Genes (Basel); 2020 Jun; 11(7):. PubMed ID: 32610603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An expanded family of proteins with BPI/LBP/PLUNC-like domains in trypanosome parasites: an association with pathogenicity?
    Gluenz E; Barker AR; Gull K
    Biochem Soc Trans; 2011 Aug; 39(4):966-70. PubMed ID: 21787331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tsetse flies, trypanosomes, humans and animals: what is proteomics revealing about their crosstalks?
    Holzmuller P; Grébaut P; Cuny G; Biron DG
    Expert Rev Proteomics; 2010 Feb; 7(1):113-26. PubMed ID: 20121481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proteomics view of programmed cell death mechanisms during host-parasite interactions.
    Cuervo P; Fernandes N; de Jesus JB
    J Proteomics; 2011 Dec; 75(1):246-56. PubMed ID: 21843666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Leishmania parasites through proteomics and implications for the clinic.
    Sundar S; Singh B
    Expert Rev Proteomics; 2018 May; 15(5):371-390. PubMed ID: 29717934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanosoma rangeli and Trypanosoma cruzi: molecular characterization of genes encoding putative calcium-binding proteins, highly conserved in trypanosomatids.
    Porcel BM; Bontempi EJ; Henriksson J; Rydåker M; Aslund L; Segura EL; Pettersson U; Ruiz AM
    Exp Parasitol; 1996 Dec; 84(3):387-99. PubMed ID: 8948328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis.
    Parab AR; McCall LI
    Infect Immun; 2021 Mar; 89(4):. PubMed ID: 33526564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trypanosoma carassii calreticulin binds host complement component C1q and inhibits classical complement pathway-mediated lysis.
    Oladiran A; Belosevic M
    Dev Comp Immunol; 2010 Apr; 34(4):396-405. PubMed ID: 19913050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids.
    Branquinha MH; Marinho FA; Sangenito LS; Oliveira SS; Goncalves KC; Ennes-Vidal V; d'Avila-Levy CM; Santos AL
    Curr Med Chem; 2013; 20(25):3174-85. PubMed ID: 23899207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of disease phenotype in trypanosomatid parasites.
    McCall LI; McKerrow JH
    Trends Parasitol; 2014 Jul; 30(7):342-9. PubMed ID: 24946952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA metabolism and genetic diversity in Trypanosomes.
    Machado CR; Augusto-Pinto L; McCulloch R; Teixeira SM
    Mutat Res; 2006 Jan; 612(1):40-57. PubMed ID: 16040270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in inferred genome-wide signals of positive selection during the evolution of Trypanosoma cruzi and Leishmania spp. lineages: A result of disparities in host and tissue infection ranges?
    Flores-López CA; Machado CA
    Infect Genet Evol; 2015 Jul; 33():37-46. PubMed ID: 25891283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases.
    Parthasarathy A; Kalesh K
    RSC Med Chem; 2020 Jun; 11(6):625-645. PubMed ID: 33479664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection.
    Veras PS; Bezerra de Menezes JP
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi.
    Smircich P; Eastman G; Bispo S; Duhagon MA; Guerra-Slompo EP; Garat B; Goldenberg S; Munroe DJ; Dallagiovanna B; Holetz F; Sotelo-Silveira JR
    BMC Genomics; 2015 Jun; 16(1):443. PubMed ID: 26054634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids.
    Persson L
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):314-7. PubMed ID: 17371268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitranscriptome machinery in Trypanosomatids: New players on the table?
    Maran SR; de Lemos Padilha Pitta JL; Dos Santos Vasconcelos CR; McDermott SM; Rezende AM; Silvio Moretti N
    Mol Microbiol; 2021 May; 115(5):942-958. PubMed ID: 33513291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.