These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 20056293)
1. Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings. Hossain MA; Noh HN; Kim KI; Koh EJ; Wi SG; Bae HJ; Lee H; Hong SW J Plant Physiol; 2010 May; 167(8):650-8. PubMed ID: 20056293 [TBL] [Abstract][Full Text] [Related]
2. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Zhong R; Kays SJ; Schroeder BP; Ye ZH Plant Cell; 2002 Jan; 14(1):165-79. PubMed ID: 11826306 [TBL] [Abstract][Full Text] [Related]
3. Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Kwon Y; Kim SH; Jung MS; Kim MS; Oh JE; Ju HW; Kim KI; Vierling E; Lee H; Hong SW Plant J; 2007 Jan; 49(2):184-93. PubMed ID: 17156413 [TBL] [Abstract][Full Text] [Related]
4. Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Lescano CI; Martini C; González CA; Desimone M Plant Mol Biol; 2016 Jul; 91(4-5):581-95. PubMed ID: 27209043 [TBL] [Abstract][Full Text] [Related]
5. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. Mao G; Seebeck T; Schrenker D; Yu O BMC Plant Biol; 2013 Oct; 13():169. PubMed ID: 24164720 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Yang L; Liu Q; Liu Z; Yang H; Wang J; Li X; Yang Y J Integr Plant Biol; 2016 Jan; 58(1):67-80. PubMed ID: 25913143 [TBL] [Abstract][Full Text] [Related]
7. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. Fischer-Kilbienski I; Miao Y; Roitsch T; Zschiesche W; Humbeck K; Krupinska K Plant Mol Biol; 2010 Jul; 73(4-5):379-90. PubMed ID: 20238146 [TBL] [Abstract][Full Text] [Related]
8. MYB94 and MYB96 Additively Activate Cuticular Wax Biosynthesis in Arabidopsis. Lee SB; Kim HU; Suh MC Plant Cell Physiol; 2016 Nov; 57(11):2300-2311. PubMed ID: 27577115 [TBL] [Abstract][Full Text] [Related]
9. OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Zhu J; Gong Z; Zhang C; Song CP; Damsz B; Inan G; Koiwa H; Zhu JK; Hasegawa PM; Bressan RA Plant Cell; 2002 Dec; 14(12):3009-28. PubMed ID: 12468724 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Kaldis A; Tsementzi D; Tanriverdi O; Vlachonasios KE Planta; 2011 Apr; 233(4):749-62. PubMed ID: 21193996 [TBL] [Abstract][Full Text] [Related]
11. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana. Renault H; El Amrani A; Palanivelu R; Updegraff EP; Yu A; Renou JP; Preuss D; Bouchereau A; Deleu C Plant Cell Physiol; 2011 May; 52(5):894-908. PubMed ID: 21471118 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of the Arabidopsis gene UPRIGHT ROSETTE reveals a homeostatic control for indole-3-acetic acid. Sun Y; Yang Y; Yuan Z; Müller JL; Yu C; Xu Y; Shao X; Li X; Decker EL; Reski R; Huang H Plant Physiol; 2010 Jul; 153(3):1311-20. PubMed ID: 20466845 [TBL] [Abstract][Full Text] [Related]
13. AtSOFL1 and AtSOFL2 act redundantly as positive modulators of the endogenous content of specific cytokinins in Arabidopsis. Zhang J; Vankova R; Malbeck J; Dobrev PI; Xu Y; Chong K; Neff MM PLoS One; 2009 Dec; 4(12):e8236. PubMed ID: 20011053 [TBL] [Abstract][Full Text] [Related]
14. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Kim YY; Jung KW; Yoo KS; Jeung JU; Shin JS Plant Cell Physiol; 2011 May; 52(5):874-84. PubMed ID: 21471120 [TBL] [Abstract][Full Text] [Related]
15. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. Min JH; Chung JS; Lee KH; Kim CS J Integr Plant Biol; 2015 Mar; 57(3):313-24. PubMed ID: 25073793 [TBL] [Abstract][Full Text] [Related]
16. The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. Wang M; Xu Q; Yu J; Yuan M Plant Mol Biol; 2010 Jul; 73(4-5):467-79. PubMed ID: 20358261 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of the Arabidopsis heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. Wu SJ; Wang LC; Yeh CH; Lu CA; Wu SJ New Phytol; 2010 Jun; 186(4):833-842. PubMed ID: 20345641 [TBL] [Abstract][Full Text] [Related]
18. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Gao Y; Badejo AA; Sawa Y; Ishikawa T Plant Cell Physiol; 2012 Mar; 53(3):592-601. PubMed ID: 22323769 [TBL] [Abstract][Full Text] [Related]
19. The Arabidopsis UGT87A2, a stress-inducible family 1 glycosyltransferase, is involved in the plant adaptation to abiotic stresses. Li P; Li YJ; Wang B; Yu HM; Li Q; Hou BK Physiol Plant; 2017 Apr; 159(4):416-432. PubMed ID: 27747895 [TBL] [Abstract][Full Text] [Related]
20. Impact of the absence of stem-specific β-glucosidases on lignin and monolignols. Chapelle A; Morreel K; Vanholme R; Le-Bris P; Morin H; Lapierre C; Boerjan W; Jouanin L; Demont-Caulet N Plant Physiol; 2012 Nov; 160(3):1204-17. PubMed ID: 22984124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]