BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 20056415)

  • 1. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.
    Kaparaju P; Felby C
    Bioresour Technol; 2010 May; 101(9):3175-81. PubMed ID: 20056415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment.
    Liu L; Sun J; Li M; Wang S; Pei H; Zhang J
    Bioresour Technol; 2009 Dec; 100(23):5853-8. PubMed ID: 19581085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility.
    Chundawat SP; Venkatesh B; Dale BE
    Biotechnol Bioeng; 2007 Feb; 96(2):219-31. PubMed ID: 16903002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of steam explosion on biodegradation of lignin in wheat straw.
    Zhang LH; Li D; Wang LJ; Wang TP; Zhang L; Chen XD; Mao ZH
    Bioresour Technol; 2008 Nov; 99(17):8512-5. PubMed ID: 18448331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL; Gossett JM
    Biotechnol Bioeng; 2012 Apr; 109(4):894-903. PubMed ID: 22094883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.
    He X; Miao Y; Jiang X; Xu Z; Ouyang P
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2449-57. PubMed ID: 19669940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-treatment of corn stover, Cynara cardunculus L. stems and wheat straw by ethanol-water and diluted sulfuric acid: Comparison under different energy input conditions.
    Vergara P; Ladero M; García-Ochoa F; Villar JC
    Bioresour Technol; 2018 Dec; 270():449-456. PubMed ID: 30245314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical tool from corn stover TGA to determine its composition.
    Freda C; Zimbardi F; Nanna F; Viola E
    Appl Biochem Biotechnol; 2012 Aug; 167(8):2283-94. PubMed ID: 22707184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw.
    García-Cubero MA; González-Benito G; Indacoechea I; Coca M; Bolado S
    Bioresour Technol; 2009 Feb; 100(4):1608-13. PubMed ID: 18951781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover.
    Duguid KB; Montross MD; Radtke CW; Crofcheck CL; Wendt LM; Shearer SA
    Bioresour Technol; 2009 Nov; 100(21):5189-95. PubMed ID: 19560347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.
    Qiu W; Chen H
    Bioresour Technol; 2012 Aug; 118():8-12. PubMed ID: 22695139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.
    Zhu Z; Sathitsuksanoh N; Vinzant T; Schell DJ; McMillan JD; Zhang YH
    Biotechnol Bioeng; 2009 Jul; 103(4):715-24. PubMed ID: 19337984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis.
    Thomsen MH; Thygesen A; Thomsen AB
    Bioresour Technol; 2008 Jul; 99(10):4221-8. PubMed ID: 17936621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of structural features on enzyme digestibility of corn stover.
    Kim S; Holtzapple MT
    Bioresour Technol; 2006 Mar; 97(4):583-91. PubMed ID: 15961307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of degraded cellulose obtained from steam-exploded wheat straw.
    Sun XF; Xu F; Sun RC; Fowler P; Baird MS
    Carbohydr Res; 2005 Jan; 340(1):97-106. PubMed ID: 15620672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma-assisted pretreatment of wheat straw.
    Schultz-Jensen N; Leipold F; Bindslev H; Thomsen AB
    Appl Biochem Biotechnol; 2011 Feb; 163(4):558-72. PubMed ID: 20725803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alkali pretreatment of wheat straw (Triticum aestivum) at boiling temperature for producing a bioethanol precursor.
    Barman DN; Haque MA; Kang TH; Kim MK; Kim J; Kim H; Yun HD
    Biosci Biotechnol Biochem; 2012; 76(12):2201-7. PubMed ID: 23221693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2004 Apr; 86(1):88-95. PubMed ID: 15007845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.