These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20056535)

  • 1. Development of on-line measurement techniques for siloxanes and other trace compounds in biogas.
    Arnold M; Kajolinna T
    Waste Manag; 2010 Jun; 30(6):1011-7. PubMed ID: 20056535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behaviour and adsorptive removal of siloxanes in sewage sludge biogas.
    Oshita K; Ishihara Y; Takaoka M; Takeda N; Matsumoto T; Morisawa S; Kitayama A
    Water Sci Technol; 2010; 61(8):2003-12. PubMed ID: 20388997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogasification of biowaste and sewage sludge--measurement of biogas quality.
    Kymäläinen M; Lähde K; Arnold M; Kurola JM; Romantschuk M; Kautola H
    J Environ Manage; 2012 Mar; 95 Suppl():S122-7. PubMed ID: 21295904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations.
    Tansel B; Surita SC
    Waste Manag; 2014 Nov; 34(11):2271-7. PubMed ID: 25160660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of on-line FTIR spectroscopy for siloxane detection in biogas to enhance carbon contactor management.
    Hepburn CA; Vale P; Brown AS; Simms NJ; McAdam EJ
    Talanta; 2015 Aug; 141():128-36. PubMed ID: 25966392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS.
    Badjagbo K; Héroux M; Alaee M; Moore S; Sauvé S
    Environ Sci Technol; 2010 Jan; 44(2):600-5. PubMed ID: 20017505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal and determination of trimethylsilanol from the landfill gas.
    Piechota G; Hagmann M; Buczkowski R
    Bioresour Technol; 2012 Jan; 103(1):16-20. PubMed ID: 22033372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling.
    Tansel B; Surita SC
    Waste Manag; 2016 Jun; 52():122-9. PubMed ID: 27055363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of volatile methyl siloxanes in biogas and the ambient environment in a landfill.
    Wang N; Tan L; Xie L; Wang Y; Ellis T
    J Environ Sci (China); 2020 May; 91():54-61. PubMed ID: 32172982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siloxane treatment by adsorption into porous materials.
    Ricaurte Ortega D; Subrenat A
    Environ Technol; 2009 Sep; 30(10):1073-83. PubMed ID: 19886432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Siloxanes removal from biogas by high surface area adsorbents.
    Gislon P; Galli S; Monteleone G
    Waste Manag; 2013 Dec; 33(12):2687-93. PubMed ID: 24075968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Siloxane removal from landfill and digester gas - a technology overview.
    Ajhar M; Travesset M; Yüce S; Melin T
    Bioresour Technol; 2010 May; 101(9):2913-23. PubMed ID: 20061140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of siloxane from digestion gas of sewage sludge.
    Matsui T; Imamura S
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S29-32. PubMed ID: 19539462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siloxanes in Biogas: Approaches of Sampling Procedure and GC-MS Method Determination.
    Piechota G
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33808478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Managing siloxanes in biogas-to-energy facilities: Economic comparison of pre- vs post-combustion practices.
    Tansel B; Surita SC
    Waste Manag; 2019 Aug; 96():121-127. PubMed ID: 31376955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on removal of siloxanes from biogas: with a special focus on volatile methylsiloxanes.
    Shen M; Zhang Y; Hu D; Fan J; Zeng G
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):30847-30862. PubMed ID: 30187417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments.
    Surita SC; Tansel B
    Sci Total Environ; 2014 Jan; 468-469():46-52. PubMed ID: 24012894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The analysis of volatile siloxanes in waste activated sludge.
    Dewil R; Appels L; Baeyens J; Buczynska A; Van Vaeck L
    Talanta; 2007 Nov; 74(1):14-9. PubMed ID: 18371607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.