These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 20056537)
1. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). de Morais MG; Stillings C; Dersch R; Rudisile M; Pranke P; Costa JA; Wendorff J Bioresour Technol; 2010 Apr; 101(8):2872-6. PubMed ID: 20056537 [TBL] [Abstract][Full Text] [Related]
2. Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications. Chen R; Qiu L; Ke Q; He C; Mo X J Biomater Sci Polym Ed; 2009; 20(11):1513-36. PubMed ID: 19619394 [TBL] [Abstract][Full Text] [Related]
3. Electrospun materials as potential platforms for bone tissue engineering. Jang JH; Castano O; Kim HW Adv Drug Deliv Rev; 2009 Oct; 61(12):1065-83. PubMed ID: 19646493 [TBL] [Abstract][Full Text] [Related]
4. Biofunctionalized nanofibers using Arthrospira (Spirulina) biomass and biopolymer. de Morais MG; Stillings C; Dersch R; Rudisile M; Pranke P; Costa JA; Wendorff J Biomed Res Int; 2015; 2015():967814. PubMed ID: 25667931 [TBL] [Abstract][Full Text] [Related]
5. Scaffolds Containing Spirulina sp. LEB 18 Biomass: Development, Characterization and Evaluation of In Vitro Biodegradation. Schmatz DA; Uebel Lda S; Kuntzler SG; Dora CL; Costa JA; de Morais MG J Nanosci Nanotechnol; 2016 Jan; 16(1):1050-9. PubMed ID: 27398568 [TBL] [Abstract][Full Text] [Related]
6. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Li M; Guo Y; Wei Y; MacDiarmid AG; Lelkes PI Biomaterials; 2006 May; 27(13):2705-15. PubMed ID: 16352335 [TBL] [Abstract][Full Text] [Related]
7. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Zhang Y; Venugopal JR; El-Turki A; Ramakrishna S; Su B; Lim CT Biomaterials; 2008 Nov; 29(32):4314-22. PubMed ID: 18715637 [TBL] [Abstract][Full Text] [Related]
8. Dual-syringe reactive electrospinning of cross-linked hyaluronic acid hydrogel nanofibers for tissue engineering applications. Ji Y; Ghosh K; Li B; Sokolov JC; Clark RA; Rafailovich MH Macromol Biosci; 2006 Oct; 6(10):811-7. PubMed ID: 17022092 [TBL] [Abstract][Full Text] [Related]
9. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Yoo HS; Kim TG; Park TG Adv Drug Deliv Rev; 2009 Oct; 61(12):1033-42. PubMed ID: 19643152 [TBL] [Abstract][Full Text] [Related]
10. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908 [TBL] [Abstract][Full Text] [Related]
11. Electrospun scaffold tailored for tissue-specific extracellular matrix. Teo WE; He W; Ramakrishna S Biotechnol J; 2006 Sep; 1(9):918-29. PubMed ID: 16941439 [TBL] [Abstract][Full Text] [Related]
12. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027 [TBL] [Abstract][Full Text] [Related]
13. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677 [TBL] [Abstract][Full Text] [Related]
14. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
15. The application of nanofibrous scaffolds in neural tissue engineering. Cao H; Liu T; Chew SY Adv Drug Deliv Rev; 2009 Oct; 61(12):1055-64. PubMed ID: 19643156 [TBL] [Abstract][Full Text] [Related]
16. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Qian Y; Shen Y; Lu Z; Fan Z; Liu T; Zhang J; Zhang F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Nov; 23(11):1365-70. PubMed ID: 19968182 [TBL] [Abstract][Full Text] [Related]
17. Biological effects of Spirulina (Arthrospira) biopolymers and biomass in the development of nanostructured scaffolds. de Morais MG; Vaz Bda S; de Morais EG; Costa JA Biomed Res Int; 2014; 2014():762705. PubMed ID: 25157367 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Ojha SS; Stevens DR; Hoffman TJ; Stano K; Klossner R; Scott MC; Krause W; Clarke LI; Gorga RE Biomacromolecules; 2008 Sep; 9(9):2523-9. PubMed ID: 18702544 [TBL] [Abstract][Full Text] [Related]
19. Development of a colorimetric pH indicator using nanofibers containing Spirulina sp. LEB 18. Kuntzler SG; Costa JAV; Brizio APDR; Morais MG Food Chem; 2020 Oct; 328():126768. PubMed ID: 32470772 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Nair LS; Bhattacharyya S; Bender JD; Greish YE; Brown PW; Allcock HR; Laurencin CT Biomacromolecules; 2004; 5(6):2212-20. PubMed ID: 15530035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]