These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20057021)

  • 1. Water motion and movement without sticking, weight loss and cross-contaminant in superhydrophobic glass tube.
    Yuan JJ; Jin RH
    Nanotechnology; 2010 Feb; 21(6):065704. PubMed ID: 20057021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
    Shirtcliffe NJ; McHale G; Newton MI; Zhang Y
    ACS Appl Mater Interfaces; 2009 Jun; 1(6):1316-23. PubMed ID: 20355928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment.
    Koc Y; de Mello AJ; McHale G; Newton MI; Roach P; Shirtcliffe NJ
    Lab Chip; 2008 Apr; 8(4):582-6. PubMed ID: 18369513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.
    Bhushan B; Wang Y; Maali A
    Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials.
    Cao L; Hu HH; Gao D
    Langmuir; 2007 Apr; 23(8):4310-4. PubMed ID: 17371061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water droplets' internal fluidity during horizontal motion on a superhydrophobic surface with an external electric field.
    Sakai M; Kono H; Nakajima A; Sakai H; Abe M; Fujishima A
    Langmuir; 2010 Feb; 26(3):1493-5. PubMed ID: 19924893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphiphilic porphyrin film on glass as a simple and selective solid-state chemosensor for aqueous Hg2+.
    Dolci LS; Marzocchi E; Montalti M; Prodi L; Monti D; Di Natale C; D'Amico A; Paolesse R
    Biosens Bioelectron; 2006 Sep; 22(3):399-404. PubMed ID: 16793254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superhydrophobic surface from Cu-Zn alloy by one step O2 concentration dependent etching.
    Wu W; Chen M; Liang S; Wang X; Chen J; Zhou F
    J Colloid Interface Sci; 2008 Oct; 326(2):478-82. PubMed ID: 18621380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.
    Shirtcliffe NJ; McHale G; Newton MI
    Langmuir; 2009 Dec; 25(24):14121-8. PubMed ID: 20560556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glass-liquid transition of water on hydrophobic surfaces.
    Souda R
    J Chem Phys; 2008 Sep; 129(12):124707. PubMed ID: 19045048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces.
    Tsai HJ; Lee YL
    Langmuir; 2007 Dec; 23(25):12687-92. PubMed ID: 17985941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responsive colloidal systems: reversible aggregation and fabrication of superhydrophobic surfaces.
    Motornov M; Sheparovych R; Lupitskyy R; MacWilliams E; Minko S
    J Colloid Interface Sci; 2007 Jun; 310(2):481-8. PubMed ID: 17335841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning of a colloidal crystal film on a modified hydrophilic and hydrophobic surface.
    Gu ZZ; Fujishima A; Sato O
    Angew Chem Int Ed Engl; 2002 Jun; 41(12):2068-70. PubMed ID: 19746599
    [No Abstract]   [Full Text] [Related]  

  • 20. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.