These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 20057034)
1. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device. Agarwal S; Yamini Sarada B; Kar KK Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034 [TBL] [Abstract][Full Text] [Related]
2. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
3. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts. Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256 [TBL] [Abstract][Full Text] [Related]
4. A solution processed top emission OLED with transparent carbon nanotube electrodes. Chien YM; Lefevre F; Shih I; Izquierdo R Nanotechnology; 2010 Apr; 21(13):134020. PubMed ID: 20208120 [TBL] [Abstract][Full Text] [Related]
5. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
6. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes. Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685 [TBL] [Abstract][Full Text] [Related]
7. Achieving uniform field emission from carbon nanotube composite cold cathode with different carbon nanotube contents: effects of conductance and plasma treatment. Liu JB; Chen J; Xu NS; Deng SZ; She JC Ultramicroscopy; 2009 Apr; 109(5):390-4. PubMed ID: 19101085 [TBL] [Abstract][Full Text] [Related]
8. Enhanced field emission from multiwall carbon nanotube films by secondary growth. Klinke C; Delvigne E; Barth JV; Kern K J Phys Chem B; 2005 Nov; 109(46):21677-80. PubMed ID: 16853815 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties. Lee YD; Lee HJ; Han JH; Yoo JE; Lee YH; Kim JK; Nahm S; Ju BK J Phys Chem B; 2006 Mar; 110(11):5310-4. PubMed ID: 16539462 [TBL] [Abstract][Full Text] [Related]
10. Effect of catalyst thickness and plasma pretreatment on the growth of carbon nanotubes and their field emission properties. Uh HS; Park SS; Kim BW J Nanosci Nanotechnol; 2007 Nov; 7(11):3731-5. PubMed ID: 18047047 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
12. Negative temperature coefficient of single-walled carbon nanotube-gold nanoparticle hybrid structures. Songmee N; Daothong S; Singjai P J Nanosci Nanotechnol; 2008 May; 8(5):2522-5. PubMed ID: 18572677 [TBL] [Abstract][Full Text] [Related]
13. Field Emission Lamps Prepared with Dip-Coated and Nickel Electroless Plated Carbon Nanotube Cathodes. Pu NW; Youh MJ; Chung KJ; Liu YM; Ger MD J Nanosci Nanotechnol; 2015 Jul; 15(7):5093-8. PubMed ID: 26373085 [TBL] [Abstract][Full Text] [Related]
14. Novel planar field emission of ultra-thin individual carbon nanotubes. Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498 [TBL] [Abstract][Full Text] [Related]
15. Nanocomposite microstructures with tunable mechanical and chemical properties. Tawfick S; Deng X; Hart AJ; Lahann J Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718 [TBL] [Abstract][Full Text] [Related]
16. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
17. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
18. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. Tian Y; Hu Z; Yang Y; Wang X; Chen X; Xu H; Wu Q; Ji W; Chen Y J Am Chem Soc; 2004 Feb; 126(4):1180-3. PubMed ID: 14746488 [TBL] [Abstract][Full Text] [Related]
19. Selected-area growth of carbon nanotubes by the combination of focused ion beam and chemical vapor deposition techniques. Jiao J; Dong L; Foxley S; Mosher CL; Tuggle DW Microsc Microanal; 2003 Dec; 9(6):516-21. PubMed ID: 14750986 [TBL] [Abstract][Full Text] [Related]
20. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition. Crouse CA; Maruyama B; Colorado R; Back T; Barron AR J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]