These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20057125)

  • 1. AtKUP/HAK/KT9, a K+ transporter from Arabidopsis thaliana, mediates Cs+ uptake in Escherichia coli.
    Kobayashi D; Uozumi N; Hisamatsu S; Yamagami M
    Biosci Biotechnol Biochem; 2010; 74(1):203-5. PubMed ID: 20057125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis.
    Adams E; Miyazaki T; Shin R
    Plant Signal Behav; 2019; 14(1):1554468. PubMed ID: 30540522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis.
    Remy E; Cabrito TR; Batista RA; Teixeira MC; Sá-Correia I; Duque P
    Plant Cell Physiol; 2015 Jan; 56(1):148-62. PubMed ID: 25378686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity.
    Kim EJ; Kwak JM; Uozumi N; Schroeder JI
    Plant Cell; 1998 Jan; 10(1):51-62. PubMed ID: 9477571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake.
    Ahn SJ; Shin R; Schachtman DP
    Plant Physiol; 2004 Mar; 134(3):1135-45. PubMed ID: 14988478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis.
    Qi Z; Hampton CR; Shin R; Barkla BJ; White PJ; Schachtman DP
    J Exp Bot; 2008; 59(3):595-607. PubMed ID: 18281719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cs(+) induces the kdp operon of Escherichia coli by lowering the intracellular K(+) concentration.
    Jung K; Krabusch M; Altendorf K
    J Bacteriol; 2001 Jun; 183(12):3800-3. PubMed ID: 11371546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP binding cassette proteins ABCG37 and ABCG33 function as potassium-independent cesium uptake carriers in Arabidopsis roots.
    Ashraf MA; Akihiro T; Ito K; Kumagai S; Sugita R; Tanoi K; Rahman A
    Mol Plant; 2021 Apr; 14(4):664-678. PubMed ID: 33588076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake.
    Garciadeblas B; Barrero-Gil J; Benito B; Rodríguez-Navarro A
    Plant J; 2007 Dec; 52(6):1080-93. PubMed ID: 17916113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells.
    Horie T; Sugawara M; Okada T; Taira K; Kaothien-Nakayama P; Katsuhara M; Shinmyo A; Nakayama H
    J Biosci Bioeng; 2011 Mar; 111(3):346-56. PubMed ID: 21084222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short day length-induced decrease of cesium uptake without altering potassium uptake manner in poplar.
    Noda Y; Furukawa J; Aohara T; Nihei N; Hirose A; Tanoi K; Nakanishi TM; Satoh S
    Sci Rep; 2016 Dec; 6():38360. PubMed ID: 27924824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influx and accumulation of Cs(+) by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K(+) transport system.
    Broadley MR; Escobar-Gutiérrez AJ; Bowen HC; Willey NJ; White PJ
    J Exp Bot; 2001 Apr; 52(357):839-44. PubMed ID: 11413220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HAK transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake.
    Benito B; Garciadeblas B; Rodriguez-Navarro A
    Plant Cell Physiol; 2012 Jun; 53(6):1117-23. PubMed ID: 22514087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice OsHAK5 is a major potassium transporter that functions in potassium uptake with high specificity but contributes less to cesium uptake.
    Uchiyama M; Fudaki R; Kobayashi T; Adachi Y; Ukai Y; Yoshihara T; Shimada H
    Biosci Biotechnol Biochem; 2022 Oct; 86(11):1599-1604. PubMed ID: 36085524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant HAK/KUP/KT K
    Li W; Xu G; Alli A; Yu L
    Semin Cell Dev Biol; 2018 Feb; 74():133-141. PubMed ID: 28711523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of csi52, a Cs+ resistant mutant of Arabidopsis thaliana altered in K+ transport.
    Maathuis FJ; Sanders D
    Plant J; 1996 Oct; 10(4):579-89. PubMed ID: 8893537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kup-mediated Cs
    Tanudjaja E; Hoshi N; Su YH; Hamamoto S; Uozumi N
    Sci Rep; 2017 May; 7(1):2122. PubMed ID: 28522840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation.
    Desbrosses-Fonrouge AG; Voigt K; Schröder A; Arrivault S; Thomine S; Krämer U
    FEBS Lett; 2005 Aug; 579(19):4165-74. PubMed ID: 16038907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis transcriptomic analysis reveals cesium inhibition of root growth involves abscisic acid signaling.
    Ong WD; Makita Y; Miyazaki T; Matsui M; Shin R
    Planta; 2024 Jan; 259(2):36. PubMed ID: 38221596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K⁺ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter.
    Sato Y; Nanatani K; Hamamoto S; Shimizu M; Takahashi M; Tabuchi-Kobayashi M; Mizutani A; Schroeder JI; Souma S; Uozumi N
    J Biochem; 2014 May; 155(5):315-23. PubMed ID: 24519967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.