These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 20057787)

  • 1. Analytical and experimental investigation of light scattering from polydispersions of Mie particles.
    Holland AC; Draper JS
    Appl Opt; 1967 Mar; 6(3):511-8. PubMed ID: 20057787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The scattering of polarized light by polydisperse systems of irregular particles.
    Holland AC; Gagne G
    Appl Opt; 1970 May; 9(5):1113-21. PubMed ID: 20076336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts.
    Gilliland KO; Freel CD; Johnsen S; Craig Fowler W; Costello MJ
    Exp Eye Res; 2004 Oct; 79(4):563-76. PubMed ID: 15381040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized light scattered from monodisperse randomly oriented nonspherical aerosol particles: measurements.
    Pinnick RG; Carroll DE; Hofmann DJ
    Appl Opt; 1976 Feb; 15(2):384-93. PubMed ID: 20164979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light scattering by irregular randomly oriented particles.
    Chyacutelek P; Grams GW; Pinnick RG
    Science; 1976 Aug; 193(4252):480-2. PubMed ID: 17841819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental apparatus for measurement of the angular, polarization, and wavelength dependence of light scattering from the visible to the infrared in bulk glass samples.
    Neeves AE; Reed WA
    Appl Opt; 1992 Apr; 31(12):2072-7. PubMed ID: 20720861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forwardscattering corrections for optical extinction measurements in aerosol media. 2: Polydispersions.
    Deepak A; Box MA
    Appl Opt; 1978 Oct; 17(19):3169-76. PubMed ID: 20203942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local optical parameters of spherical polydispersions: simple approximations.
    Kokhanovsky AA; Zege EP
    Appl Opt; 1995 Aug; 34(24):5513-9. PubMed ID: 21060373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle sizing by means of the forward scattering lobe.
    Hodkinson JR
    Appl Opt; 1966 May; 5(5):839-44. PubMed ID: 20048958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared (10.6-mum) scattering and extinction in laboratory water and ice clouds.
    Sassen K
    Appl Opt; 1981 Jan; 20(2):185-93. PubMed ID: 20309089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant effects in evanescent wave scattering of polydisperse colloids.
    Wu HJ; Shah S; Beckham R; Meissner KE; Bevan MA
    Langmuir; 2008 Dec; 24(23):13790-5. PubMed ID: 18991410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the light-scattering form factor on the Bragg diffraction patterns of arrays of metallic nanoparticles.
    Gonçalves MR; Siegel A; Marti O
    J Microsc; 2008 Mar; 229(Pt 3):475-82. PubMed ID: 18331498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier representation of the energy distribution of an electromagnetic field scattered by spherical particles.
    Eiden R
    Appl Opt; 1975 Oct; 14(10):2486-91. PubMed ID: 20155046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The backscattering and extinction of visible and infrared radiation by selected major cloud models.
    Carrier LW; Cato GA; von Essen KJ
    Appl Opt; 1967 Jul; 6(7):1209-16. PubMed ID: 20062165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations.
    Yamada M; Butts MD; Kalla KK
    J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic light scattering from nanoparticles by monochromatic vacuum-ultraviolet radiation.
    Shu J; Wilson KR; Ahmed M; Leone SR; Graf C; Rühl E
    J Chem Phys; 2006 Jan; 124(3):034707. PubMed ID: 16438600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-scattering features of turbidity-causing particles in interconnected reservoir basins and a connecting stream.
    Peng F; Effler SW; Pierson DC; Smith DG
    Water Res; 2009 May; 43(8):2280-92. PubMed ID: 19278710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of mie scattering intensities from monodispersed spherical particles as a function of wavelength.
    Cohen A; Derr VE; McNice GT; Cupp RE
    Appl Opt; 1973 Apr; 12(4):779-82. PubMed ID: 20125388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical inversions in remote sensing of particle size distributions. 3: Angular and spectral scattering in the Rayleigh-Gans-Born approximation for particles of various geometrical shapes.
    Fymat AL
    Appl Opt; 1979 Jan; 18(1):126-30. PubMed ID: 20208673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.