These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Images of truncated one-dimensional periodic bar targets in aberration-limited optical systems. Foreman JW; Hunt GH; Lawson EK Appl Opt; 1971 Jan; 10(1):105-8. PubMed ID: 20094399 [TBL] [Abstract][Full Text] [Related]
3. Diffraction images of truncated sine and square wave periodic objects in the presence of linear image motion. Singh K; Rattan R; Jain NK Appl Opt; 1973 Aug; 12(8):1846-50. PubMed ID: 20125619 [TBL] [Abstract][Full Text] [Related]
4. Modulation of a general periodic object with triangular waveform by a narrow rectangular aperture with amplitude filters. Singh K; Chopra KN Appl Opt; 1969 Aug; 8(8):1695-702. PubMed ID: 20072497 [TBL] [Abstract][Full Text] [Related]
5. Primary wavefront aberrations calculation from a defocused image or a Hartmanngram. Malacara-Doblado D; Malacara-Hernández Z; Gómez-Vieyra A Appl Opt; 2010 Apr; 49(12):2302-8. PubMed ID: 20411009 [TBL] [Abstract][Full Text] [Related]
6. Polarization of one-dimensional periodic systems in a static electric field: sawtooth potential treatment revisited. Kirtman B; Ferrero M; Rérat M; Springborg M J Chem Phys; 2009 Jul; 131(4):044109. PubMed ID: 19655839 [TBL] [Abstract][Full Text] [Related]
7. Linear-scaling calculation of static and dynamic polarizabilities in Hartree-Fock and density functional theory for periodic systems. Izmaylov AF; Brothers EN; Scuseria GE J Chem Phys; 2006 Dec; 125(22):224105. PubMed ID: 17176132 [TBL] [Abstract][Full Text] [Related]
8. Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields. Springborg M; Kirtman B J Chem Phys; 2007 Mar; 126(10):104107. PubMed ID: 17362061 [TBL] [Abstract][Full Text] [Related]
9. Localized states in 1D Frenkel exciton systems: a comparison between infinite-range and nearest-neighbor transfer for normal and inverted bands. Avgin I; Huber DL J Phys Chem B; 2009 Oct; 113(43):14112-7. PubMed ID: 19788261 [TBL] [Abstract][Full Text] [Related]
10. Imaging of incoherent extended objects by a polarizing microscope with crossed polarizers. Gupta KK; Bahuguna RD; Singh K Microsc Acta; 1977 Nov; 80(1):37-41. PubMed ID: 593158 [TBL] [Abstract][Full Text] [Related]
11. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
12. A new fast method for the reconstruction of 2-D microwave images of rotating objects. Berizzi F; Corsini G IEEE Trans Image Process; 1999; 8(5):679-87. PubMed ID: 18267483 [TBL] [Abstract][Full Text] [Related]
13. A network that learns to recognize three-dimensional objects. Poggio T; Edelman S Nature; 1990 Jan; 343(6255):263-6. PubMed ID: 2300170 [TBL] [Abstract][Full Text] [Related]
14. Development of a real-time stereo transmission electron microscope. Tanji T; Tanaka H; Kojima T J Electron Microsc (Tokyo); 2005 Jun; 54(3):215-22. PubMed ID: 15994207 [TBL] [Abstract][Full Text] [Related]
15. Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. Izmaylov AF; Scuseria GE Phys Chem Chem Phys; 2008 Jun; 10(23):3421-9. PubMed ID: 18535725 [TBL] [Abstract][Full Text] [Related]
16. Spin-diffusion approach for relaxation in bi-spaced periodic one-dimensional systems. Kotecha M; Shukla A; Pandey L; Kumar A J Magn Reson; 2006 Jul; 181(1):113-8. PubMed ID: 16644251 [TBL] [Abstract][Full Text] [Related]
17. Two-dimensional optical three-pulse photon echo spectroscopy. II. Signatures of coherent electronic motion and exciton population transfer in dimer two-dimensional spectra. Pisliakov AV; Mancal T; Fleming GR J Chem Phys; 2006 Jun; 124(23):234505. PubMed ID: 16821927 [TBL] [Abstract][Full Text] [Related]