These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 20058489)
1. A motif extraction algorithm based on hashing and modulo-4 arithmetic. Sheng H; Mehrotra K; Mohan C; Raina R Int J Comput Biol Drug Des; 2008; 1(2):185-99. PubMed ID: 20058489 [TBL] [Abstract][Full Text] [Related]
2. PRECISE: software for prediction of cis-acting regulatory elements. Trindade LM; van Berloo R; Fiers M; Visser RG J Hered; 2005; 96(5):618-22. PubMed ID: 16135709 [TBL] [Abstract][Full Text] [Related]
3. GAME: detecting cis-regulatory elements using a genetic algorithm. Wei Z; Jensen ST Bioinformatics; 2006 Jul; 22(13):1577-84. PubMed ID: 16632495 [TBL] [Abstract][Full Text] [Related]
4. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves. Berendzen KW; Stüber K; Harter K; Wanke D BMC Bioinformatics; 2006 Nov; 7():522. PubMed ID: 17137509 [TBL] [Abstract][Full Text] [Related]
6. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Liu XS; Brutlag DL; Liu JS Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404 [TBL] [Abstract][Full Text] [Related]
7. A steganalysis-based approach to comprehensive identification and characterization of functional regulatory elements. Wang G; Zhang W Genome Biol; 2006; 7(6):R49. PubMed ID: 16787547 [TBL] [Abstract][Full Text] [Related]
8. Prediction of cis-regulatory elements: from high-information content analysis to motif identification. Li G; Lu J; Olman V; Xu Y J Bioinform Comput Biol; 2007 Aug; 5(4):817-38. PubMed ID: 17787058 [TBL] [Abstract][Full Text] [Related]
9. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Hughes JD; Estep PW; Tavazoie S; Church GM J Mol Biol; 2000 Mar; 296(5):1205-14. PubMed ID: 10698627 [TBL] [Abstract][Full Text] [Related]
10. Combining sequence and time series expression data to learn transcriptional modules. Kundaje A; Middendorf M; Gao F; Wiggins C; Leslie C IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):194-202. PubMed ID: 17044183 [TBL] [Abstract][Full Text] [Related]
12. More robust detection of motifs in coexpressed genes by using phylogenetic information. Monsieurs P; Thijs G; Fadda AA; De Keersmaecker SC; Vanderleyden J; De Moor B; Marchal K BMC Bioinformatics; 2006 Mar; 7():160. PubMed ID: 16549017 [TBL] [Abstract][Full Text] [Related]
13. Ab initio identification of putative human transcription factor binding sites by comparative genomics. Corà D; Herrmann C; Dieterich C; Di Cunto F; Provero P; Caselle M BMC Bioinformatics; 2005 May; 6():110. PubMed ID: 15865625 [TBL] [Abstract][Full Text] [Related]
14. Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets. Ikebata H; Yoshida R Bioinformatics; 2015 May; 31(10):1561-8. PubMed ID: 25583120 [TBL] [Abstract][Full Text] [Related]
15. A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis. Shamloo-Dashtpagerdi R; Razi H; Aliakbari M; Lindlöf A; Ebrahimi M; Ebrahimie E J Theor Biol; 2015 Jan; 364():364-76. PubMed ID: 25303887 [TBL] [Abstract][Full Text] [Related]
16. GSMC: Combining Parallel Gibbs Sampling with Maximal Cliques for Hunting DNA Motif. Pei C; Wang SL; Fang J; Zhang W J Comput Biol; 2017 Dec; 24(12):1243-1253. PubMed ID: 29116820 [TBL] [Abstract][Full Text] [Related]
17. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Favorov AV; Gelfand MS; Gerasimova AV; Ravcheev DA; Mironov AA; Makeev VJ Bioinformatics; 2005 May; 21(10):2240-5. PubMed ID: 15728117 [TBL] [Abstract][Full Text] [Related]
18. Finding motifs from all sequences with and without binding sites. Leung HC; Chin FY Bioinformatics; 2006 Sep; 22(18):2217-23. PubMed ID: 16870937 [TBL] [Abstract][Full Text] [Related]
19. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes. Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169 [TBL] [Abstract][Full Text] [Related]
20. A cluster refinement algorithm for motif discovery. Li G; Chan TM; Leung KS; Lee KH IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):654-68. PubMed ID: 21030733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]