These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 200585)

  • 1. A phospholipid requirement for NADH oxidation in mitochondria.
    Fleischer S; Casu A; Fleischer B
    Ital J Biochem; 1977; 26(4):277-96. PubMed ID: 200585
    [No Abstract]   [Full Text] [Related]  

  • 2. Phospholipase C treatment of mitochondria.
    Casu A; Saito A; Fleischer B; Fleischer S
    Ital J Biochem; 1977; 26(4):297-316. PubMed ID: 924760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide radical release into the cytoplasm of heart cells by an NADH-driven oxygen activator.
    Nohl H
    Basic Life Sci; 1988; 49():898-903. PubMed ID: 2855012
    [No Abstract]   [Full Text] [Related]  

  • 4. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles.
    Ferreira J; Wilkinson C; Gil L
    Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of lipid-protein interactions in NADH-cytochrome c reductase (rotenone-insensitive) of rat liver mitochondria.
    Feo F; Canuto RA; Garcea R; Brossa O
    Biochim Biophys Acta; 1978 Oct; 504(1):1-14. PubMed ID: 213108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Evaluation of structuro-functional heterogeneity of isolated mitochondria from the normal and the ischemic myocardium].
    Balasiavichius RV; Toleĭkis AI; Prashkiavichius AK; Iasaĭtis AA
    Biokhimiia; 1985 Oct; 50(10):1685-93. PubMed ID: 3000462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate].
    Kotliar AB
    Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotenone and amytal insensitive coupled oxidation of NADH by mitochondria from Aspergillus niger.
    Watson K; Smith HE
    J Biochem; 1967 Apr; 61(4):527-30. PubMed ID: 4294221
    [No Abstract]   [Full Text] [Related]  

  • 10. [Rotenone-insensitive NADH oxydation in mitochondrial suspension occurs by NADH dehydrogenase of respiratory chain fragments].
    Sharova IV; Vekshin NL
    Biofizika; 2004; 49(5):814-21. PubMed ID: 15526465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The mechanism of action of a synthetic derivative of 1,4-naphthoquinone on the respiratory chain of liver and heart mitochondria].
    Levin GS; Tremasova GIa; Kostova SV; Dregeris IaIa
    Biokhimiia; 1989 Oct; 54(10):1630-7. PubMed ID: 2574998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Oxidation of lactate in isolated rat heart mitochondria].
    Kim NP; Akhmerov RN; Makhmudov ES
    Ukr Biokhim Zh (1978); 1990; 62(5):67-72. PubMed ID: 1980165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of experimental myocardial infarct on the rate of NADH and 3-hydroxybutyrate oxidation in heart mitochondria].
    Dzheia PP; Toleikis AI; Prashkiavichius AK
    Vopr Med Khim; 1980; 26(6):731-5. PubMed ID: 7456403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibition of NADH-dehydrogenase by low concentrations of NAD+].
    Avraam R; Kotliar AB
    Biokhimiia; 1991 Dec; 56(12):2253-60. PubMed ID: 1807407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [One- and two-electron reduction of ubiquinone homologs by NADH- dehydrogenase preparations from the mitochondrial respiratory chain].
    Sled' VD; Zinich VN; Kotliar AB
    Biokhimiia; 1989 Sep; 54(9):1571-5. PubMed ID: 2590688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The markers of pig heart mitochondrial sub-fractions : I. - The dual location of NADPH-cytochrome c reductase in outer membrane and microsomes.
    Comte J; Gautheron DC
    Biochimie; 1978; 60(11-12):1289-98. PubMed ID: 223663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NADH-dependent electron transfer system of liver microsomes. The oxidation-reduction mechanism of cytochrome b5 (author's transl)].
    Onishi T
    Hokkaido Igaku Zasshi; 1974 Sep; 49(5):397-410. PubMed ID: 4376123
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of ionol-type antioxidants on the energetics of liver mitochondria].
    Drobinskaia IE; Zhigacheva IV; Kaplan EIa
    Biokhimiia; 1982 Jan; 47(1):81-5. PubMed ID: 7066421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further observations on the inhibition of NADH oxidase by short chain ubiquinone homologs.
    Pasquali P; Landi L; Cabrini L; Sechi AM; Lenaz G
    Boll Soc Ital Biol Sper; 1982 May; 58(10):585-90. PubMed ID: 6810905
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.