These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 20058886)
1. Excited-state energies and electronic couplings of DNA base dimers. Kozak CR; Kistler KA; Lu Z; Matsika S J Phys Chem B; 2010 Feb; 114(4):1674-83. PubMed ID: 20058886 [TBL] [Abstract][Full Text] [Related]
2. Electronic coupling in the excited electronic state of stacked DNA base homodimers. Ritze HH; Hobza P; Nachtigallová D Phys Chem Chem Phys; 2007 Apr; 9(14):1672-5. PubMed ID: 17396177 [TBL] [Abstract][Full Text] [Related]
3. Electronic splitting in the excited states of DNA base homodimers and -trimers: an evaluation of short-range and Coulombic interactions. Nachtigallová D; Hobza P; Ritze HH Phys Chem Chem Phys; 2008 Oct; 10(37):5689-97. PubMed ID: 18956103 [TBL] [Abstract][Full Text] [Related]
4. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. Jurecka P; Hobza P J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608 [TBL] [Abstract][Full Text] [Related]
5. The effect of pi-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers. Bravaya KB; Kostko O; Ahmed M; Krylov AI Phys Chem Chem Phys; 2010 Mar; 12(10):2292-307. PubMed ID: 20449342 [TBL] [Abstract][Full Text] [Related]
6. Conformational dependence of the electronic coupling for singlet excitation energy transfer in DNA. An INDO/S study. Voityuk AA Phys Chem Chem Phys; 2010 Jul; 12(27):7403-8. PubMed ID: 20532402 [TBL] [Abstract][Full Text] [Related]
7. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels. Dabkowska I; Gonzalez HV; Jurecka P; Hobza P J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422 [TBL] [Abstract][Full Text] [Related]
8. Coupled-cluster and density functional theory studies of the electronic 0-0 transitions of the DNA bases. Ovchinnikov VA; Sundholm D Phys Chem Chem Phys; 2014 Apr; 16(15):6931-41. PubMed ID: 24595333 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of photoinduced processes in adenine and thymine base pairs. Samoylova E; Lippert H; Ullrich S; Hertel IV; Radloff W; Schultz T J Am Chem Soc; 2005 Feb; 127(6):1782-6. PubMed ID: 15701013 [TBL] [Abstract][Full Text] [Related]
10. Theoretical insight into the intrinsic ultrafast formation of cyclobutane pyrimidine dimers in UV-irradiated DNA: thymine versus cytosine. Serrano-Pérez JJ; González-Ramírez I; Coto PB; Merchán M; Serrano-Andrés L J Phys Chem B; 2008 Nov; 112(45):14096-8. PubMed ID: 18928316 [TBL] [Abstract][Full Text] [Related]
11. Benchmark studies on the building blocks of DNA. 3. Watson-Crick and stacked base pairs. Szalay PG; Watson T; Perera A; Lotrich V; Bartlett RJ J Phys Chem A; 2013 Apr; 117(15):3149-57. PubMed ID: 23473108 [TBL] [Abstract][Full Text] [Related]
12. Estimates of electronic coupling for excess electron transfer in DNA. Voityuk AA J Chem Phys; 2005 Jul; 123(3):34903. PubMed ID: 16080759 [TBL] [Abstract][Full Text] [Related]
13. Sequence, structure and energy transfer in DNA. Nordlund TM Photochem Photobiol; 2007; 83(3):625-36. PubMed ID: 17576373 [TBL] [Abstract][Full Text] [Related]
14. Thymine dimerization in DNA model systems: cyclobutane photolesion is predominantly formed via the singlet channel. Schreier WJ; Kubon J; Regner N; Haiser K; Schrader TE; Zinth W; Clivio P; Gilch P J Am Chem Soc; 2009 Apr; 131(14):5038-9. PubMed ID: 19309140 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen-bonding-induced shifts of the excitation energies in nucleic acid bases: an interplay between electrostatic and electron density overlap effects. Wesolowski TA J Am Chem Soc; 2004 Sep; 126(37):11444-5. PubMed ID: 15366883 [TBL] [Abstract][Full Text] [Related]
17. Rapid evaluation of the binding energies between peptide amide and DNA base. Li Y; Wang CS J Comput Chem; 2011 Oct; 32(13):2765-73. PubMed ID: 21710636 [TBL] [Abstract][Full Text] [Related]
18. Exciton delocalization, charge transfer, and electronic coupling for singlet excitation energy transfer between stacked nucleobases in DNA: an MS-CASPT2 study. Blancafort L; Voityuk AA J Chem Phys; 2014 Mar; 140(9):095102. PubMed ID: 24606381 [TBL] [Abstract][Full Text] [Related]
19. Electronic spectra, excited state structures and interactions of nucleic acid bases and base assemblies: a review. Shukla MK; Leszczynski J J Biomol Struct Dyn; 2007 Aug; 25(1):93-118. PubMed ID: 17676942 [TBL] [Abstract][Full Text] [Related]
20. Excited states decay of the A-T DNA: A PCM/TD-DFT study in aqueous solution of the (9-methyl-adenine)(2).(1-methyl-thymine)(2) stacked tetramer. Santoro F; Barone V; Improta R J Am Chem Soc; 2009 Oct; 131(42):15232-45. PubMed ID: 19803481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]