BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 20058894)

  • 1. Dynamical crossover and breakdown of the Stokes-Einstein relation in confined water and in methanol-diluted bulk water.
    Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Stanley HE; Chen SH
    J Phys Chem B; 2010 Feb; 114(5):1870-8. PubMed ID: 20058894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results.
    Mallamace F; Broccio M; Corsaro C; Faraone A; Wanderlingh U; Liu L; Mou CY; Chen SH
    J Chem Phys; 2006 Apr; 124(16):161102. PubMed ID: 16674122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments.
    Lagi M; Chu X; Kim C; Mallamace F; Baglioni P; Chen SH
    J Phys Chem B; 2008 Feb; 112(6):1571-5. PubMed ID: 18205352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamical crossover phenomenon in bulk water, confined water and protein hydration water.
    Mallamace F; Corsaro C; Baglioni P; Fratini E; Chen SH
    J Phys Condens Matter; 2012 Feb; 24(6):064103. PubMed ID: 22277288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme.
    Zhang Y; Lagi M; Liu D; Mallamace F; Fratini E; Baglioni P; Mamontov E; Hagen M; Chen SH
    J Chem Phys; 2009 Apr; 130(13):135101. PubMed ID: 19355784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 kCorsaro C; Spooren J; Branca C; Leone N; Broccio M; Kim C; Chen SH; Stanley HE; Mallamace F
    J Phys Chem B; 2008 Aug; 112(34):10449-54. PubMed ID: 18672927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glass transition and relaxation behavior of bulk water and a possible relation to confined water.
    Swenson J; Teixeira J
    J Chem Phys; 2010 Jan; 132(1):014508. PubMed ID: 20078173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water.
    Chen SH; Liu L; Chu X; Zhang Y; Fratini E; Baglioni P; Faraone A; Mamontov E
    J Chem Phys; 2006 Nov; 125(17):171103. PubMed ID: 17100421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband depolarized light scattering study of diluted protein aqueous solutions.
    Perticaroli S; Comez L; Paolantoni M; Sassi P; Lupi L; Fioretto D; Paciaroni A; Morresi A
    J Phys Chem B; 2010 Jun; 114(24):8262-9. PubMed ID: 20509696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory.
    Chen SH; Zhang Y; Lagi M; Chong SH; Baglioni P; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504102. PubMed ID: 21836213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The violation of the Stokes-Einstein relation in supercooled water.
    Chen SH; Mallamace F; Mou CY; Broccio M; Corsaro C; Faraone A; Liu L
    Proc Natl Acad Sci U S A; 2006 Aug; 103(35):12974-8. PubMed ID: 16920792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system.
    Mallamace F; Chen SH; Broccio M; Corsaro C; Crupi V; Majolino D; Venuti V; Baglioni P; Fratini E; Vannucci C; Stanley HE
    J Chem Phys; 2007 Jul; 127(4):045104. PubMed ID: 17672727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.
    Khodadadi S; Pawlus S; Sokolov AP
    J Phys Chem B; 2008 Nov; 112(45):14273-80. PubMed ID: 18942780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between solvent and protein dynamics as studied by dielectric spectroscopy.
    Jansson H; Bergman R; Swenson J
    J Phys Chem B; 2005 Dec; 109(50):24134-41. PubMed ID: 16375405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separable cooperative and localized translational motions of water confined by a chemically heterogeneous environment.
    Malardier-Jugroot C; Head-Gordon T
    Phys Chem Chem Phys; 2007 Apr; 9(16):1962-71. PubMed ID: 17431524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of supercooled water in confined geometry.
    Bergman R; Swenson J
    Nature; 2000 Jan; 403(6767):283-6. PubMed ID: 10659841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of protein unfolding and limited refolding: characterization of partially unfolded states of ubiquitin in 60% methanol and in water.
    Alonso DO; Daggett V
    J Mol Biol; 1995 Mar; 247(3):501-20. PubMed ID: 7714903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of water confined in single- and double-wall carbon nanotubes.
    Mamontov E; Burnham CJ; Chen SH; Moravsky AP; Loong CK; de Souza NR; Kolesnikov AI
    J Chem Phys; 2006 May; 124(19):194703. PubMed ID: 16729830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bond breaking mechanism and water reorientational dynamics in the hydration layer of lysozyme.
    Jana B; Pal S; Bagchi B
    J Phys Chem B; 2008 Jul; 112(30):9112-7. PubMed ID: 18610957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition.
    Chong SH; Chen SH; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504101. PubMed ID: 21836212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.