These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20058898)

  • 61. Understanding the photothermal conversion efficiency of gold nanocrystals.
    Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J
    Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anisotropic shift of surface plasmon resonance of gold nanoparticles doped in nematic liquid crystal.
    Choudhary A; Li G
    Opt Express; 2014 Oct; 22(20):24348-57. PubMed ID: 25322010
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Environmentally benign in situ synthesis of gold nanotapes using carboxymethyl cellulose.
    Bhattacharjee RR; Rashid MH; Mandal TK
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3610-5. PubMed ID: 19051918
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A tunable plasmon resonance in gold nanobelts.
    Anderson LJ; Payne CM; Zhen YR; Nordlander P; Hafner JH
    Nano Lett; 2011 Nov; 11(11):5034-7. PubMed ID: 21973047
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hybridized nanocavities as single-polarized plasmonic antennas.
    Yanik AA; Adato R; Erramilli S; Altug H
    Opt Express; 2009 Nov; 17(23):20900-10. PubMed ID: 19997327
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures.
    Swanglap P; Slaughter LS; Chang WS; Willingham B; Khanal BP; Zubarev ER; Link S
    ACS Nano; 2011 Jun; 5(6):4892-901. PubMed ID: 21561157
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sensitivity enhancement by Au nanoparticles in surface plasmon resonance chemical sensors.
    Choi SW; Kim HS; Kang WS; Kim JH; Cho YJ; Kim JH
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4569-73. PubMed ID: 19049060
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Atomic-scale confinement of resonant optical fields.
    Kern J; Grossmann S; Tarakina NV; Häckel T; Emmerling M; Kamp M; Huang JS; Biagioni P; Prangsma JC; Hecht B
    Nano Lett; 2012 Nov; 12(11):5504-9. PubMed ID: 22984927
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates.
    Obara G; Maeda N; Miyanishi T; Terakawa M; Nedyalkov NN; Obara M
    Opt Express; 2011 Sep; 19(20):19093-103. PubMed ID: 21996850
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Surface plasmon effects on two photon luminescence of gold nanorods.
    Wang DS; Hsu FY; Lin CW
    Opt Express; 2009 Jul; 17(14):11350-9. PubMed ID: 19582049
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg(2+)-DNA complex induced aggregation of gold nanoparticles.
    Liu ZD; Li YF; Ling J; Huang CZ
    Environ Sci Technol; 2009 Jul; 43(13):5022-7. PubMed ID: 19673301
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fabrication of gold nanocrescents by angle deposition with nanosphere lithography for localized surface plasmon resonance applications.
    Zhou X; Virasawmy S; Knoll W; Liu KY; Tse MS; Yen LW
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3369-78. PubMed ID: 19051882
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures.
    Tate N; Sugiyama H; Naruse M; Nomura W; Yatsui T; Kawazoe T; Ohtsu M
    Opt Express; 2009 Jun; 17(13):11113-21. PubMed ID: 19550511
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Metal nanoparticle ensembles: tunable laser pulses distinguish monomer from dimer vibrations.
    Jais PM; Murray DB; Merlin R; Bragas AV
    Nano Lett; 2011 Sep; 11(9):3685-9. PubMed ID: 21800878
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Engineering SERS via absorption control in novel hybrid Ni/Au nanovoids.
    Cole RM; Mahajan S; Bartlett PN; Baumberg JJ
    Opt Express; 2009 Aug; 17(16):13298-308. PubMed ID: 19654734
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Coupling strength can control the polarization twist of a plasmonic antenna.
    Abasahl B; Dutta-Gupta S; Santschi C; Martin OJ
    Nano Lett; 2013 Sep; 13(9):4575-9. PubMed ID: 23987803
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs.
    Ekinci Y; Christ A; Agio M; Martin OJ; Solak HH; Löffler JF
    Opt Express; 2008 Aug; 16(17):13287-95. PubMed ID: 18711565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.