These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20059158)

  • 1. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.
    Carminati M; Ferrari G; Sampietro M
    Rev Sci Instrum; 2009 Dec; 80(12):124701. PubMed ID: 20059158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy.
    Pliquett U; Schönfeldt M; Barthel A; Frense D; Nacke T; Beckmann D
    Physiol Meas; 2011 Jul; 32(7):927-44. PubMed ID: 21646715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system.
    Hartov A; Mazzarese RA; Reiss FR; Kerner TE; Osterman KS; Williams DB; Paulsen KD
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):49-58. PubMed ID: 10646279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical studies on liquid properties in extended nanospaces using mercury microelectrodes.
    Tsukahara T; Kuwahata T; Hibara A; Kim HB; Mawatari K; Kitamori T
    Electrophoresis; 2009 Sep; 30(18):3212-8. PubMed ID: 19722213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dual analyzer for real-time impedance and noise spectroscopy of nanoscale devices.
    Joo MK; Kang P; Kim Y; Kim GT; Kim S
    Rev Sci Instrum; 2011 Mar; 82(3):034702. PubMed ID: 21456771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband impedance spectrum analyzer for process automation applications.
    Doerner S; Schneider T; Hauptmann PR
    Rev Sci Instrum; 2007 Oct; 78(10):105101. PubMed ID: 17979452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures.
    Vergani M; Carminati M; Ferrari G; Landini E; Caviglia C; Heiskanen A; Comminges C; Zór K; Sabourin D; Dufva M; Dimaki M; Raiteri R; Wollenberger U; Emneus J; Sampietro M
    IEEE Trans Biomed Circuits Syst; 2012 Oct; 6(5):498-507. PubMed ID: 23853236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A multichannel device for the noninvasive analysis of the state and function of organs and tissues].
    Thiel F; Hartung C
    Biomed Tech (Berl); 2004 Sep; 49(9):233-7. PubMed ID: 15493130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.
    Ehrensberger MT; Gilbert JL
    J Biomed Mater Res A; 2010 May; 93(2):576-84. PubMed ID: 19591235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental determination of Cm measurement related hardware parameters of the patch-clamp amplifier.
    Zhang H; Xiong J; Luo J; Qu A
    J Neurosci Methods; 2009 Jan; 176(2):246-53. PubMed ID: 18789969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated circuit amplifiers for multi-electrode intracortical recording.
    Jochum T; Denison T; Wolf P
    J Neural Eng; 2009 Feb; 6(1):012001. PubMed ID: 19139560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband excitation for short-time impedance spectroscopy.
    Min M; Pliquett U; Nacke T; Barthel A; Annus P; Land R
    Physiol Meas; 2008 Jun; 29(6):S185-92. PubMed ID: 18544807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips.
    Notingher I; Elfick A
    J Phys Chem B; 2005 Aug; 109(33):15699-706. PubMed ID: 16852992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance spectroscopy using maximum length sequences: application to single cell analysis.
    Gawad S; Sun T; Green NG; Morgan H
    Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale devices for online dielectric spectroscopy of biological cells.
    Debuisson D; Treizebré A; Houssin T; Leclerc E; Bartès-Biesel D; Legrand D; Mazurier J; Arscott S; Bocquet B; Senez V
    Physiol Meas; 2008 Jun; 29(6):S213-25. PubMed ID: 18544801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 32-electrode data collection system for electrical impedance tomography.
    Koukourlis CS; Kyriacou GA; Sahalos JN
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):632-6. PubMed ID: 7790020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance spectroscopy of human erythrocytes: system calibration and nonlinear modeling.
    Bao JZ; Davis CC; Schmukler RE
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):364-78. PubMed ID: 8375873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for modelling and optimizing an electrical impedance tomography system.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2006 May; 27(5):S51-64. PubMed ID: 16636420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.