BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 20059265)

  • 1. Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing.
    Hamad-Schifferli K
    Adv Biochem Eng Biotechnol; 2024; 187():185-221. PubMed ID: 38273208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approach for plasmonic based DNA sensing: amplification of the wavelength shift and simultaneous detection of the plasmon modes of gold nanostructures.
    Spadavecchia J; Barras A; Lyskawa J; Woisel P; Laure W; Pradier CM; Boukherroub R; Szunerits S
    Anal Chem; 2013 Mar; 85(6):3288-96. PubMed ID: 23413826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Gold Nanoparticle to Plasmonic Biosensors.
    Lee JH; Cho HY; Choi HK; Lee JY; Choi JW
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29997363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Plasmon Enhanced Light Scattering Biosensing: Size Dependence on the Gold Nanoparticle Tag.
    Yang CT; Xu Y; Pourhassan-Moghaddam M; Tran DP; Wu L; Zhou X; Thierry B
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30650578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy.
    Shegai T; Langhammer C
    Adv Mater; 2011 Oct; 23(38):4409-14. PubMed ID: 21898608
    [No Abstract]   [Full Text] [Related]  

  • 6. Engineering Efficient Self-Assembled Plasmonic Nanostructures by Configuring Metallic Nanoparticle's Morphology.
    Devaraj V; Lee JM; Kim YJ; Jeong H; Oh JW
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanogold-plasmon-resonance-based glucose sensing.
    Aslan K; Lakowicz JR; Geddes CD
    Anal Biochem; 2004 Jul; 330(1):145-55. PubMed ID: 15183773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications.
    Wu L; Reinhard BM
    Chem Soc Rev; 2014 Jun; 43(11):3884-97. PubMed ID: 24390574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis.
    Kumar S; Park H; Cho H; Siddique RH; Narasimhan V; Yang D; Choo H
    Nat Commun; 2020 Jun; 11(1):2930. PubMed ID: 32523000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical characterization of single plasmonic nanoparticles.
    Olson J; Dominguez-Medina S; Hoggard A; Wang LY; Chang WS; Link S
    Chem Soc Rev; 2015 Jan; 44(1):40-57. PubMed ID: 24979351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations.
    Sousa AA; Hassan SA; Knittel LL; Balbo A; Aronova MA; Brown PH; Schuck P; Leapman RD
    Nanoscale; 2016 Mar; 8(12):6577-88. PubMed ID: 26934984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging.
    Zhou XL; Yang Y; Wang S; Liu XW
    Angew Chem Int Ed Engl; 2020 Jan; 59(5):1776-1785. PubMed ID: 31531917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensing by densely packed and optically coupled plasmonic particle arrays.
    Sannomiya T; Sahoo PK; Mahcicek DI; Solak HH; Hafner C; Grieshaber D; Vörös J
    Small; 2009 Aug; 5(16):1889-96. PubMed ID: 19384877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ sensing of single binding events by localized surface plasmon resonance.
    Sannomiya T; Hafner C; Voros J
    Nano Lett; 2008 Oct; 8(10):3450-5. PubMed ID: 18767880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durable plasmonic cap arrays on flexible substrate with real-time optical tunability for high-fidelity SERS devices.
    Kang H; Heo CJ; Jeon HC; Lee SY; Yang SM
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4569-74. PubMed ID: 23675608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering plasmonic metal colloids through composition and structural design.
    Motl NE; Smith AF; DeSantis CJ; Skrabalak SE
    Chem Soc Rev; 2014 Jun; 43(11):3823-34. PubMed ID: 24352187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the light-metal interaction for biomolecular sensing and imaging.
    Höppener C; Novotny L
    Q Rev Biophys; 2012 May; 45(2):209-55. PubMed ID: 22559015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing.
    Sannomiya T; Hafner C; Vörös J
    J Biomed Opt; 2009; 14(6):064027. PubMed ID: 20059265
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.