These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20059453)

  • 21. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors.
    Stockmeier CA; DiCarlo JJ; Zhang Y; Thompson P; Meltzer HY
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1374-84. PubMed ID: 8103793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Serotonergic control of prefrontal cortex].
    Puig MV; Celada P; Artigas F
    Rev Neurol; 2004 Sep 16-30; 39(6):539-47. PubMed ID: 15467993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Schizophrenia: a psychobiological view].
    Rodríguez-Arias M; Aguilar MA; Espert R; Miñarro J
    Rev Neurol; 1996 Oct; 24(134):1210-20. PubMed ID: 8983716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing sertindole to other new generation antipsychotics on preferential dopamine output in limbic versus striatal projection regions: mechanism of action.
    Hertel P
    Synapse; 2006 Dec; 60(7):543-52. PubMed ID: 16952163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMDA antagonist and antipsychotic actions in cortico-subcortical circuits.
    Kargieman L; Santana N; Mengod G; Celada P; Artigas F
    Neurotox Res; 2008 Oct; 14(2-3):129-40. PubMed ID: 19073421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The affinity of antipsychotic drugs to dopamine and serotonin 5-HT
    Tollens F; Gass N; Becker R; Schwarz AJ; Risterucci C; Künnecke B; Lebhardt P; Reinwald J; Sack M; Weber-Fahr W; Meyer-Lindenberg A; Sartorius A
    Eur Neuropsychopharmacol; 2018 Sep; 28(9):1035-1046. PubMed ID: 30006253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuropathology markers and pathways associated with molecular targets for antipsychotic drugs in postmortem brain tissues: exploration of drug targets through the Stanley Neuropathology Integrative Database.
    Kim S; Zavitsanou K; Gurguis G; Webster MJ
    Eur Neuropsychopharmacol; 2012 Oct; 22(10):683-94. PubMed ID: 22356822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei.
    Vázquez-Borsetti P; Celada P; Cortés R; Artigas F
    Int J Neuropsychopharmacol; 2011 Apr; 14(3):289-302. PubMed ID: 20374686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dopamine, the prefrontal cortex and schizophrenia.
    Knable MB; Weinberger DR
    J Psychopharmacol; 1997; 11(2):123-31. PubMed ID: 9208376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Limbic circuits and monoamine receptors: dissecting the effects of antipsychotics from disease processes.
    Joyce JN; Goldsmith SG; Gurevich EV
    J Psychiatr Res; 1997; 31(2):197-217. PubMed ID: 9278186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of Serotonin2C Receptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum.
    Santana N; Artigas F
    Cereb Cortex; 2017 Jun; 27(6):3125-3139. PubMed ID: 27252352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopamine depletion of the prefrontal cortex induces dendritic spine loss: reversal by atypical antipsychotic drug treatment.
    Wang HD; Deutch AY
    Neuropsychopharmacology; 2008 May; 33(6):1276-86. PubMed ID: 17687264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. D3 Receptors Regulate Excitability in a Unique Class of Prefrontal Pyramidal Cells.
    Clarkson RL; Liptak AT; Gee SM; Sohal VS; Bender KJ
    J Neurosci; 2017 Jun; 37(24):5846-5860. PubMed ID: 28522735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication.
    da Silva Alves F; Figee M; van Amelsvoort T; Veltman D; de Haan L
    Psychopharmacol Bull; 2008; 41(1):121-32. PubMed ID: 18362875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noradrenergic mechanisms in the prefrontal cortex.
    Nutt DJ; Lalies MD; Lione LA; Hudson AL
    J Psychopharmacol; 1997; 11(2):163-8. PubMed ID: 9208379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How do the atypical antipsychotics work?
    Ananth J; Burgoyne KS; Gadasalli R; Aquino S
    J Psychiatry Neurosci; 2001 Nov; 26(5):385-94. PubMed ID: 11762206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Neurodevelopment and schizophrenia].
    De Erausquin GA
    Vertex; 2002; 13(49):189-97. PubMed ID: 12404020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Schizophrenia: a computational reinforcement learning perspective.
    Frank MJ
    Schizophr Bull; 2008 Nov; 34(6):1008-11. PubMed ID: 18791075
    [No Abstract]   [Full Text] [Related]  

  • 39. Semi-mechanistic computer simulation of psychotic symptoms in schizophrenia with a model of a humanized cortico-striatal-thalamocortical loop.
    Spiros A; Roberts P; Geerts H
    Eur Neuropsychopharmacol; 2017 Feb; 27(2):107-119. PubMed ID: 28062203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dopamine hypothesis of schizophrenia: making sense of it all.
    Toda M; Abi-Dargham A
    Curr Psychiatry Rep; 2007 Aug; 9(4):329-36. PubMed ID: 17880866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.