These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20059546)

  • 1. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant.
    Marvasi M; Visscher PT; Perito B; Mastromei G; Casillas-Martínez L
    FEMS Microbiol Ecol; 2010 Mar; 71(3):341-50. PubMed ID: 20059546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis.
    Ito M; Hicks DB; Henkin TM; Guffanti AA; Powers BD; Zvi L; Uematsu K; Krulwich TA
    Mol Microbiol; 2004 Aug; 53(4):1035-49. PubMed ID: 15306009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species.
    Dick J; De Windt W; De Graef B; Saveyn H; Van der Meeren P; De Belie N; Verstraete W
    Biodegradation; 2006 Aug; 17(4):357-67. PubMed ID: 16491305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance.
    Ren D; Bedzyk LA; Setlow P; Thomas SM; Ye RW; Wood TK
    Biotechnol Bioeng; 2004 May; 86(3):344-64. PubMed ID: 15083514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization.
    Barabesi C; Galizzi A; Mastromei G; Rossi M; Tamburini E; Perito B
    J Bacteriol; 2007 Jan; 189(1):228-35. PubMed ID: 17085570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis.
    Veening JW; Kuipers OP; Brul S; Hellingwerf KJ; Kort R
    J Bacteriol; 2006 Apr; 188(8):3099-109. PubMed ID: 16585769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168.
    Rahman MS; Ano T; Shoda M
    J Biotechnol; 2007 Jan; 127(3):503-7. PubMed ID: 16942812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms formed on deteriorated ignimbrite stones: influence of calcium on EPS production and biofilm formation by these isolates.
    López-Moreno A; Sepúlveda-Sánchez JD; Mercedes Alonso Guzmán EM; Le Borgne S
    Biofouling; 2014; 30(5):547-60. PubMed ID: 24689777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targets of the master regulator of biofilm formation in Bacillus subtilis.
    Chu F; Kearns DB; Branda SS; Kolter R; Losick R
    Mol Microbiol; 2006 Feb; 59(4):1216-28. PubMed ID: 16430695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A master regulator for biofilm formation by Bacillus subtilis.
    Kearns DB; Chu F; Branda SS; Kolter R; Losick R
    Mol Microbiol; 2005 Feb; 55(3):739-49. PubMed ID: 15661000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular clutch disables flagella in the Bacillus subtilis biofilm.
    Blair KM; Turner L; Winkelman JT; Berg HC; Kearns DB
    Science; 2008 Jun; 320(5883):1636-8. PubMed ID: 18566286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of biofilm induced calcite precipitation.
    Zhang T; Klapper I
    Water Sci Technol; 2010; 61(11):2957-64. PubMed ID: 20489270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Division of labour during Bacillus subtilis biofilm formation.
    Kearns DB
    Mol Microbiol; 2008 Jan; 67(2):229-31. PubMed ID: 18086186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.
    Vahabi A; Ramezanianpour AA; Sharafi H; Zahiri HS; Vali H; Noghabi KA
    J Basic Microbiol; 2015 Jan; 55(1):105-11. PubMed ID: 25590872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.
    Ercole C; Bozzelli P; Altieri F; Cacchio P; Del Gallo M
    Microsc Microanal; 2012 Aug; 18(4):829-39. PubMed ID: 22697480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes.
    Kobayashi K
    J Bacteriol; 2007 Jul; 189(13):4920-31. PubMed ID: 17468240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro regulation of CaCO(3) crystal growth by the highly acidic proteins of calcitic sclerites in soft coral, Sinularia Polydactyla.
    Rahman MA; Oomori T
    Connect Tissue Res; 2009; 50(5):285-93. PubMed ID: 19863387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation.
    Lazarevic V; Soldo B; Médico N; Pooley H; Bron S; Karamata D
    Appl Environ Microbiol; 2005 Jan; 71(1):39-45. PubMed ID: 15640167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of amorphous calcium carbonate and the template action of vaterite spheres.
    Shen Q; Wei H; Zhou Y; Huang Y; Yang H; Wang D; Xu D
    J Phys Chem B; 2006 Feb; 110(7):2994-3000. PubMed ID: 16494300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and morphological features of biofilms formed by transgenic and wild type strains of Bacillus subtilis.
    Mogilnaya OA; Krylova TY; Popova LY
    Microbiol Res; 2003; 158(4):327-35. PubMed ID: 14717454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.