BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20060002)

  • 1. Kinetics of cardiac sarcomeric processes and rate-limiting steps in contraction and relaxation.
    Stehle R; Iorga B
    J Mol Cell Cardiol; 2010 May; 48(5):843-50. PubMed ID: 20060002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered expression of titin and contractile proteins in failing human myocardium.
    Hein S; Scholz D; Fujitani N; Rennollet H; Brand T; Friedl A; Schaper J
    J Mol Cell Cardiol; 1994 Oct; 26(10):1291-306. PubMed ID: 7869390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac function and modulation of sarcomeric function by length.
    Hanft LM; Korte FS; McDonald KS
    Cardiovasc Res; 2008 Mar; 77(4):627-36. PubMed ID: 18079105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias.
    Ter Keurs HE; Shinozaki T; Zhang YM; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():79-95. PubMed ID: 18375580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote control of A-band cardiac thin filaments by the I-Z-I protein network of cardiac sarcomeres.
    Solaro RJ
    Trends Cardiovasc Med; 2005 May; 15(4):148-52. PubMed ID: 16099379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dominant role of cardiac molecular motors in the intrinsic regulation of ventricular ejection and relaxation.
    Hinken AC; Solaro RJ
    Physiology (Bethesda); 2007 Apr; 22():73-80. PubMed ID: 17420299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes.
    Stehle R; Krüger M; Pfitzer G
    Biophys J; 2002 Oct; 83(4):2152-61. PubMed ID: 12324432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils.
    Iorga B; Blaudeck N; Solzin J; Neulen A; Stehle I; Lopez Davila AJ; Pfitzer G; Stehle R
    Cardiovasc Res; 2008 Mar; 77(4):676-86. PubMed ID: 18096573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic peptides of actin-tropomyosin binding region of troponin I and heat shock protein 20 modulate the relaxation process of skinned preparations of taenia caeci from guinea pig.
    Yoshino Y; Sakurai W; Morimoto S; Watanabe M
    Jpn J Physiol; 2005 Dec; 55(6):373-8. PubMed ID: 16417677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle.
    Ter Keurs HE; Wakayama Y; Miura M; Stuyvers BD; Boyden PA; Landesberg A
    Ann N Y Acad Sci; 2005 Jun; 1047():345-65. PubMed ID: 16093510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Contribution of cooperative mechanisms of the thin filament activation to the myocardium contractile function. Assessment by a mathematical model].
    Kantsel'son LB; Sul'man TB; Solov'eva OE; Markhasin VS
    Biofizika; 2009; 54(1):53-61. PubMed ID: 19334633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+) exchange with troponin C and cardiac muscle dynamics.
    Davis JP; Tikunova SB
    Cardiovasc Res; 2008 Mar; 77(4):619-26. PubMed ID: 18079104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Factors affecting the relaxation and diastolic properties of the left ventricle].
    Nitenberg A
    Ann Cardiol Angeiol (Paris); 1983 Nov; 32(7):455-63. PubMed ID: 6660822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcomere relaxation in intact cardiac muscle.
    Krueger JW; Strobeck JE
    Eur J Cardiol; 1978 Jun; 7 Suppl():79-96. PubMed ID: 668770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease.
    Moss RL; Razumova M; Fitzsimons DP
    Circ Res; 2004 May; 94(10):1290-300. PubMed ID: 15166116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractility-dependent actin dynamics in cardiomyocyte sarcomeres.
    Skwarek-Maruszewska A; Hotulainen P; Mattila PK; Lappalainen P
    J Cell Sci; 2009 Jun; 122(Pt 12):2119-26. PubMed ID: 19470580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of sarcomeres during cardiac myofibrillar relaxation: stretch-induced cross-bridge detachment contributes to early diastolic filling.
    Stehle R; Solzin J; Iorga B; Gomez D; Blaudeck N; Pfitzer G
    J Muscle Res Cell Motil; 2006; 27(5-7):423-34. PubMed ID: 16897577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support.
    Latif N; Yacoub MH; George R; Barton PJ; Birks EJ
    J Heart Lung Transplant; 2007 Mar; 26(3):230-5. PubMed ID: 17346624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.