BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20060041)

  • 21. Factor analysis for gene regulatory networks and transcription factor activity profiles.
    Pournara I; Wernisch L
    BMC Bioinformatics; 2007 Feb; 8():61. PubMed ID: 17319944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ExPlain: finding upstream drug targets in disease gene regulatory networks.
    Kel A; Voss N; Valeev T; Stegmaier P; Kel-Margoulis O; Wingender E
    SAR QSAR Environ Res; 2008; 19(5-6):481-94. PubMed ID: 18853298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2007 Jun; 8():188. PubMed ID: 17559637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data.
    Li H; Zhan M
    Bioinformatics; 2008 Sep; 24(17):1874-80. PubMed ID: 18586698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Latent Semantic Indexing of PubMed abstracts for identification of transcription factor candidates from microarray derived gene sets.
    Roy S; Heinrich K; Phan V; Berry MW; Homayouni R
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S19. PubMed ID: 22165960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microarray-based identification of transcription factor target genes.
    Gorte M; Horstman A; Page RB; Heidstra R; Stromberg A; Boutilier K
    Methods Mol Biol; 2011; 754():119-41. PubMed ID: 21720950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computation of significance scores of unweighted Gene Set Enrichment Analyses.
    Keller A; Backes C; Lenhof HP
    BMC Bioinformatics; 2007 Aug; 8():290. PubMed ID: 17683603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian variable selection for gene expression modeling with regulatory motif binding sites in neuroinflammatory events.
    Liu KY; Zhou X; Kan K; Wong ST
    Neuroinformatics; 2006; 4(1):95-117. PubMed ID: 16595861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linking signaling pathways to transcriptional programs in breast cancer.
    Osmanbeyoglu HU; Pelossof R; Bromberg JF; Leslie CS
    Genome Res; 2014 Nov; 24(11):1869-80. PubMed ID: 25183703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrative analysis of time course microarray data and DNA sequence data via log-linear models for identifying dynamic transcriptional regulatory networks.
    Choi HS; Kim Y; Cho KH; Park T
    Int J Data Min Bioinform; 2013; 7(1):38-57. PubMed ID: 23437514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing disease states from topological properties of transcriptional regulatory networks.
    Tuck DP; Kluger HM; Kluger Y
    BMC Bioinformatics; 2006 May; 7():236. PubMed ID: 16670008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression.
    Messina DN; Glasscock J; Gish W; Lovett M
    Genome Res; 2004 Oct; 14(10B):2041-7. PubMed ID: 15489324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FGMD: A novel approach for functional gene module detection in cancer.
    Jin D; Lee H
    PLoS One; 2017; 12(12):e0188900. PubMed ID: 29244808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Profiling activities of transcription factors in breast cancer cell lines.
    Jiang X; Roth L; Lai C; Li X
    Assay Drug Dev Technol; 2006 Jun; 4(3):293-305. PubMed ID: 16834535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data.
    Reverter A; Hudson NJ; Nagaraj SH; PĂ©rez-Enciso M; Dalrymple BP
    Bioinformatics; 2010 Apr; 26(7):896-904. PubMed ID: 20144946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes.
    Ho Sui SJ; Mortimer JR; Arenillas DJ; Brumm J; Walsh CJ; Kennedy BP; Wasserman WW
    Nucleic Acids Res; 2005; 33(10):3154-64. PubMed ID: 15933209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring transcription factor activity from microarray data reveals novel targets for toxicological investigations.
    Souza TM; van den Beucken T; Kleinjans JCS; Jennen DGJ
    Toxicology; 2017 Aug; 389():101-107. PubMed ID: 28743512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inferring activity changes of transcription factors by binding association with sorted expression profiles.
    Cheng C; Yan X; Sun F; Li LM
    BMC Bioinformatics; 2007 Nov; 8():452. PubMed ID: 18021409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporating gene functions into regression analysis of DNA-protein binding data and gene expression data to construct transcriptional networks.
    Wei P; Pan W
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(3):401-15. PubMed ID: 18670043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrative method to decode regulatory logics in gene transcription.
    Yan B; Guan D; Wang C; Wang J; He B; Qin J; Boheler KR; Lu A; Zhang G; Zhu H
    Nat Commun; 2017 Oct; 8(1):1044. PubMed ID: 29051499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.