BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20060275)

  • 1. Lipid/particle assemblies based on maltodextrin-gum arabic core as bio-carriers.
    Gomes JF; Rocha S; do Carmo Pereira M; Peres I; Moreno S; Toca-Herrera J; Coelho MA
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):449-55. PubMed ID: 20060275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.
    Liu J; Gong T; Wang C; Zhong Z; Zhang Z
    Int J Pharm; 2007 Aug; 340(1-2):153-62. PubMed ID: 17428627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention.
    Rocha S; Generalov R; Pereira Mdo C; Peres I; Juzenas P; Coelho MA
    Nanomedicine (Lond); 2011 Jan; 6(1):79-87. PubMed ID: 21182420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.
    Ye A; Flanagan J; Singh H
    Biopolymers; 2006 Jun; 82(2):121-33. PubMed ID: 16453308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes.
    Tamba Y; Ohba S; Kubota M; Yoshioka H; Yoshioka H; Yamazaki M
    Biophys J; 2007 May; 92(9):3178-94. PubMed ID: 17293394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system.
    Oh KS; Lee KE; Han SS; Cho SH; Kim D; Yuk SH
    Biomacromolecules; 2005; 6(2):1062-7. PubMed ID: 15762679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core/Shell nanoparticles with lecithin lipid cores for protein delivery.
    Oh KS; Han SK; Lee HS; Koo HM; Kim RS; Lee KE; Han SS; Cho SH; Yuk SH
    Biomacromolecules; 2006 Aug; 7(8):2362-7. PubMed ID: 16903683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of gum arabic, maltodextrin and pullulan with lipids in emulsions.
    Matsumura Y; Satake C; Egami M; Mori T
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1827-35. PubMed ID: 11055384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release.
    Papadimitriou S; Bikiaris D
    J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles.
    Kong H; Yang J; Zhang Y; Fang Y; Nishinari K; Phillips GO
    Int J Biol Macromol; 2014 Apr; 65():155-62. PubMed ID: 24418338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization.
    Chen YC; Yu SH; Tsai GJ; Tang DW; Mi FL; Peng YP
    J Agric Food Chem; 2010 Jun; 58(11):6728-34. PubMed ID: 20476739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase separation behavior of egg yolk suspensions after anionic polysaccharides addition.
    Navidghasemizad S; Temelli F; Wu J
    Carbohydr Polym; 2015 Mar; 117():297-303. PubMed ID: 25498638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and in vitro evaluation of primaquine-conjugated gum arabic microspheres.
    Nishi KK; Jayakrishnan A
    Biomacromolecules; 2004; 5(4):1489-95. PubMed ID: 15244469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid lipid nanodispersions containing mixed lipid core and a polar heterolipid: characterization.
    Attama AA; Schicke BC; Paepenmüller T; Müller-Goymann CC
    Eur J Pharm Biopharm; 2007 Aug; 67(1):48-57. PubMed ID: 17276663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil.
    Fernandes RV; Borges SV; Botrel DA
    Carbohydr Polym; 2014 Jan; 101():524-32. PubMed ID: 24299808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: Development and characterization.
    Tolun A; Altintas Z; Artik N
    J Biotechnol; 2016 Dec; 239():23-33. PubMed ID: 27720817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model.
    Gao J; Mao Y; Xiang C; Cao M; Ren G; Wang K; Ma X; Wu D; Xie H
    Food Chem; 2021 Aug; 354():129516. PubMed ID: 33744663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular binding of catechins to biomembranes: relationship to biological activity.
    Sirk TW; Brown EF; Friedman M; Sum AK
    J Agric Food Chem; 2009 Aug; 57(15):6720-8. PubMed ID: 19572638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of lipid nanoparticles by Cryo-EM for characterizing siRNA delivery vehicles.
    Crawford R; Dogdas B; Keough E; Haas RM; Wepukhulu W; Krotzer S; Burke PA; Sepp-Lorenzino L; Bagchi A; Howell BJ
    Int J Pharm; 2011 Jan; 403(1-2):237-44. PubMed ID: 20974237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of highly stable selenium nanoparticles capped with hyperbranched polysaccharide in water.
    Zhang Y; Wang J; Zhang L
    Langmuir; 2010 Nov; 26(22):17617-23. PubMed ID: 20964304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.