These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
776 related articles for article (PubMed ID: 20060450)
1. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2010 Mar; 388(1-2):263-73. PubMed ID: 20060450 [TBL] [Abstract][Full Text] [Related]
2. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
3. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
4. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles. Essa S; Louhichi F; Raymond M; Hildgen P J Microencapsul; 2013; 30(3):205-17. PubMed ID: 22894166 [TBL] [Abstract][Full Text] [Related]
5. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
6. Microporous structure and drug release kinetics of polymeric nanoparticles. Sant S; Thommes M; Hildgen P Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222 [TBL] [Abstract][Full Text] [Related]
7. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles. Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel. Dong Y; Feng SS J Biomed Mater Res A; 2006 Jul; 78(1):12-9. PubMed ID: 16596586 [TBL] [Abstract][Full Text] [Related]
9. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery. Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548 [TBL] [Abstract][Full Text] [Related]
10. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600 [TBL] [Abstract][Full Text] [Related]
11. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Li Y; Wu H; Yang X; Jia M; Li Y; Huang Y; Lin J; Wu S; Hou Z Mol Pharm; 2014 Aug; 11(8):2915-27. PubMed ID: 24984984 [TBL] [Abstract][Full Text] [Related]
12. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles. Mainardes RM; Khalil NM; Gremião MP Int J Pharm; 2010 Aug; 395(1-2):266-71. PubMed ID: 20580792 [TBL] [Abstract][Full Text] [Related]
13. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Zhang Z; Feng SS Biomacromolecules; 2006 Apr; 7(4):1139-46. PubMed ID: 16602731 [TBL] [Abstract][Full Text] [Related]
14. Tablet formulation of Famotidine-loaded P-gp inhibiting nanoparticles using PLA-g-PEG grafted polymer. Mokhtar M; Gosselin PM; François-Xavier L; Hildgen P Pharm Dev Technol; 2019 Feb; 24(2):211-221. PubMed ID: 29564944 [TBL] [Abstract][Full Text] [Related]
15. Investigation of polymer and nanoparticle properties with nicotinic acid and p-aminobenzoic acid grafted on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) via click chemistry. Suksiriworapong J; Sripha K; Kreuter J; Junyaprasert VB Bioconjug Chem; 2011 Apr; 22(4):582-94. PubMed ID: 21375231 [TBL] [Abstract][Full Text] [Related]
16. Cytotoxicity of Paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. He X; Ma J; Mercado AE; Xu W; Jabbari E Pharm Res; 2008 Jul; 25(7):1552-62. PubMed ID: 18196205 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
18. Design of PEG-grafted-PLA nanoparticles as oral permeability enhancer for P-gp substrate drug model Famotidine. Mokhtar M; Gosselin P; Lacasse F; Hildgen P J Microencapsul; 2017 Feb; 34(1):91-103. PubMed ID: 28151040 [TBL] [Abstract][Full Text] [Related]
19. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Dong Y; Feng SS Biomaterials; 2004 Jun; 25(14):2843-9. PubMed ID: 14962562 [TBL] [Abstract][Full Text] [Related]
20. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Feng SS; Mei L; Anitha P; Gan CW; Zhou W Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]