These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 20060491)
1. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Costes SV; Chiolo I; Pluth JM; Barcellos-Hoff MH; Jakob B Mutat Res; 2010; 704(1-3):78-87. PubMed ID: 20060491 [TBL] [Abstract][Full Text] [Related]
2. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin. Ahmed EA; Agay D; Schrock G; Drouet M; Meineke V; Scherthan H PLoS One; 2012; 7(6):e39521. PubMed ID: 22761813 [TBL] [Abstract][Full Text] [Related]
3. Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Meyer B; Voss KO; Tobias F; Jakob B; Durante M; Taucher-Scholz G Nucleic Acids Res; 2013 Jul; 41(12):6109-18. PubMed ID: 23620287 [TBL] [Abstract][Full Text] [Related]
4. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Noon AT; Shibata A; Rief N; Löbrich M; Stewart GS; Jeggo PA; Goodarzi AA Nat Cell Biol; 2010 Feb; 12(2):177-84. PubMed ID: 20081839 [TBL] [Abstract][Full Text] [Related]
5. Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. Yamauchi M; Oka Y; Yamamoto M; Niimura K; Uchida M; Kodama S; Watanabe M; Sekine I; Yamashita S; Suzuki K DNA Repair (Amst); 2008 Mar; 7(3):405-17. PubMed ID: 18248856 [TBL] [Abstract][Full Text] [Related]
6. Wild-type p53-induced phosphatase 1 dephosphorylates histone variant gamma-H2AX and suppresses DNA double strand break repair. Moon SH; Lin L; Zhang X; Nguyen TA; Darlington Y; Waldman AS; Lu X; Donehower LA J Biol Chem; 2010 Apr; 285(17):12935-47. PubMed ID: 20118229 [TBL] [Abstract][Full Text] [Related]
7. Characterizing the DNA Damage Response by Cell Tracking Algorithms and Cell Features Classification Using High-Content Time-Lapse Analysis. Georgescu W; Osseiran A; Rojec M; Liu Y; Bombrun M; Tang J; Costes SV PLoS One; 2015; 10(6):e0129438. PubMed ID: 26107175 [TBL] [Abstract][Full Text] [Related]
8. Smad7 foci are present in micronuclei induced by heavy particle radiation. Wang M; Saha J; Cucinotta FA Mutat Res; 2013 Aug; 756(1-2):108-14. PubMed ID: 23643526 [TBL] [Abstract][Full Text] [Related]
9. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Wilson PF; Nham PB; Urbin SS; Hinz JM; Jones IM; Thompson LH Mutat Res; 2010 Jan; 683(1-2):91-7. PubMed ID: 19896956 [TBL] [Abstract][Full Text] [Related]
10. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells. Botchway SW; Reynolds P; Parker AW; O'Neill P Methods Enzymol; 2012; 504():3-28. PubMed ID: 22264527 [TBL] [Abstract][Full Text] [Related]
11. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. Goodarzi AA; Jeggo P; Lobrich M DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673 [TBL] [Abstract][Full Text] [Related]
12. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. Schultz LB; Chehab NH; Malikzay A; Halazonetis TD J Cell Biol; 2000 Dec; 151(7):1381-90. PubMed ID: 11134068 [TBL] [Abstract][Full Text] [Related]
13. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Riballo E; Kühne M; Rief N; Doherty A; Smith GC; Recio MJ; Reis C; Dahm K; Fricke A; Krempler A; Parker AR; Jackson SP; Gennery A; Jeggo PA; Löbrich M Mol Cell; 2004 Dec; 16(5):715-24. PubMed ID: 15574327 [TBL] [Abstract][Full Text] [Related]
14. Protein-protein interactions occur between p53 phosphoforms and ATM and 53BP1 at sites of exogenous DNA damage. Al Rashid ST; Harding SM; Law C; Coackley C; Bristow RG Radiat Res; 2011 May; 175(5):588-98. PubMed ID: 21361779 [TBL] [Abstract][Full Text] [Related]
15. Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. Ugenskiene R; Prise K; Folkard M; Lekki J; Stachura Z; Zazula M; Stachura J Int J Radiat Biol; 2009; 85(10):872-82. PubMed ID: 19863201 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Al Rashid ST; Dellaire G; Cuddihy A; Jalali F; Vaid M; Coackley C; Folkard M; Xu Y; Chen BP; Chen DJ; Lilge L; Prise KM; Bazett Jones DP; Bristow RG Cancer Res; 2005 Dec; 65(23):10810-21. PubMed ID: 16322227 [TBL] [Abstract][Full Text] [Related]
17. S1219 residue of 53BP1 is phosphorylated by ATM kinase upon DNA damage and required for proper execution of DNA damage response. Lee H; Kwak HJ; Cho IT; Park SH; Lee CH Biochem Biophys Res Commun; 2009 Jan; 378(1):32-6. PubMed ID: 18996087 [TBL] [Abstract][Full Text] [Related]
18. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. Rappold I; Iwabuchi K; Date T; Chen J J Cell Biol; 2001 Apr; 153(3):613-20. PubMed ID: 11331310 [TBL] [Abstract][Full Text] [Related]
19. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. Lassmann M; Hänscheid H; Gassen D; Biko J; Meineke V; Reiners C; Scherthan H J Nucl Med; 2010 Aug; 51(8):1318-25. PubMed ID: 20660387 [TBL] [Abstract][Full Text] [Related]
20. PTIP regulates 53BP1 and SMC1 at the DNA damage sites. Wu J; Prindle MJ; Dressler GR; Yu X J Biol Chem; 2009 Jul; 284(27):18078-84. PubMed ID: 19414588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]