These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20060585)

  • 21. Sustained depolarization-induced propagation of [Ca2+]i oscillations in cultured DRG neurons: the involvement of extracellular ATP and P2Y receptor activation.
    Zeng Y; Lv XH; Zeng SQ; Tian SL; Li M; Shi J
    Brain Res; 2008 Nov; 1239():12-23. PubMed ID: 18804455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phospholipase C-dependent control of cardiac calcium homeostasis involves a TRPC3-NCX1 signaling complex.
    Eder P; Probst D; Rosker C; Poteser M; Wolinski H; Kohlwein SD; Romanin C; Groschner K
    Cardiovasc Res; 2007 Jan; 73(1):111-9. PubMed ID: 17129578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered signal transduction secondary to surface IgM cross-linking on B-chronic lymphocytic leukemia cells. Differential activation of the phosphatidylinositol-specific phospholipase C.
    Hivroz C; Gény B; Brouet JC; Grillot-Courvalin C
    J Immunol; 1990 Mar; 144(6):2351-8. PubMed ID: 2107258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts.
    Khatib L; Golan DE; Cho M
    FASEB J; 2004 Dec; 18(15):1903-5. PubMed ID: 15385433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.
    Noh SJ; Kim MJ; Shim S; Han JK
    J Cell Physiol; 1998 Aug; 176(2):412-23. PubMed ID: 9648929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global, synchronous oscillations in cytosolic calcium and adherence in bradykinin-stimulated Madin-Darby canine kidney cells.
    De Blasio BF; Røttingen JA; Sand KL; Giaever I; Iversen JG
    Acta Physiol Scand; 2004 Apr; 180(4):335-46. PubMed ID: 15030375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical modelling of calcium wave propagation in mammalian airway epithelium: evidence for regenerative ATP release.
    Warren NJ; Tawhai MH; Crampin EJ
    Exp Physiol; 2010 Jan; 95(1):232-49. PubMed ID: 19700517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propagation of intercellular Ca2+ waves in mechanically stimulated articular chondrocytes.
    D'Andrea P; Vittur F
    FEBS Lett; 1997 Jan; 400(1):58-64. PubMed ID: 9000513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca2+ signaling regulated by an ATP-dependent autocrine mechanism in astrocytes.
    Shiga H; Tojima T; Ito E
    Neuroreport; 2001 Aug; 12(12):2619-22. PubMed ID: 11522936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells.
    Thore S; Dyachok O; Tengholm A
    J Biol Chem; 2004 May; 279(19):19396-400. PubMed ID: 15044448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical stimulation initiates intercellular Ca2+ signaling in intact tracheal epithelium maintained under normal gravity and simulated microgravity.
    Felix JA; Chaban VV; Woodruff ML; Dirksen ER
    Am J Respir Cell Mol Biol; 1998 May; 18(5):602-10. PubMed ID: 9569230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4.1 cells.
    Ryan MJ; Gross KW; Hajduczok G
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E823-9. PubMed ID: 11001764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visualizing calcium signaling in cells by digitized wide-field and confocal fluorescent microscopy.
    Roe MW; Fiekers JF; Philipson LH; Bindokas VP
    Methods Mol Biol; 2006; 319():37-66. PubMed ID: 16719350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcortical Ca2+ waves sneaking under the plasma membrane in endothelial cells.
    Isshiki M; Mutoh A; Fujita T
    Circ Res; 2004 Aug; 95(3):e11-21. PubMed ID: 15242969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An intercellular regenerative calcium wave in porcine coronary artery endothelial cells in primary culture.
    Domenighetti AA; Bény JL; Chabaud F; Frieden M
    J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):103-16. PubMed ID: 9782162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A role for Ca(2+)-conducting ion channels in mechanically-induced signal transduction of airway epithelial cells.
    Boitano S; Sanderson MJ; Dirksen ER
    J Cell Sci; 1994 Nov; 107 ( Pt 11)():3037-44. PubMed ID: 7699003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C.
    Violin JD; Zhang J; Tsien RY; Newton AC
    J Cell Biol; 2003 Jun; 161(5):899-909. PubMed ID: 12782683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical stimulation initiates cell-to-cell calcium signaling in ovine lens epithelial cells.
    Churchill GC; Atkinson MM; Louis CF
    J Cell Sci; 1996 Feb; 109 ( Pt 2)():355-65. PubMed ID: 8838659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bending the MDCK cell primary cilium increases intracellular calcium.
    Praetorius HA; Spring KR
    J Membr Biol; 2001 Nov; 184(1):71-9. PubMed ID: 11687880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Imaging phosphoinositide dynamics in living cells.
    Wuttke A; Idevall-Hagren O; Tengholm A
    Methods Mol Biol; 2010; 645():219-35. PubMed ID: 20645191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.