These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 20060838)

  • 1. A folding zone in the ribosomal exit tunnel for Kv1.3 helix formation.
    Tu LW; Deutsch C
    J Mol Biol; 2010 Mar; 396(5):1346-60. PubMed ID: 20060838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel.
    Tu L; Deutsch C
    J Mol Biol; 2017 Jun; 429(11):1722-1732. PubMed ID: 28478285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome.
    Tu L; Khanna P; Deutsch C
    J Mol Biol; 2014 Jan; 426(1):185-98. PubMed ID: 24055377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure acquisition of the T1 domain of Kv1.3 during biogenesis.
    Kosolapov A; Tu L; Wang J; Deutsch C
    Neuron; 2004 Oct; 44(2):295-307. PubMed ID: 15473968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tertiary interactions within the ribosomal exit tunnel.
    Kosolapov A; Deutsch C
    Nat Struct Mol Biol; 2009 Apr; 16(4):405-11. PubMed ID: 19270700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structure formation of a transmembrane segment in Kv channels.
    Lu J; Deutsch C
    Biochemistry; 2005 Jun; 44(23):8230-43. PubMed ID: 15938612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ribosome-Sec61 Translocon Complex Forms a Cytosolically Restricted Environment for Early Polytopic Membrane Protein Folding.
    Patterson MA; Bandyopadhyay A; Devaraneni PK; Woodward J; Rooney L; Yang Z; Skach WR
    J Biol Chem; 2015 Nov; 290(48):28944-52. PubMed ID: 26254469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatics in the ribosomal tunnel modulate chain elongation rates.
    Lu J; Deutsch C
    J Mol Biol; 2008 Dec; 384(1):73-86. PubMed ID: 18822297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane but not soluble helices fold inside the ribosome tunnel.
    Bañó-Polo M; Baeza-Delgado C; Tamborero S; Hazel A; Grau B; Nilsson I; Whitley P; Gumbart JC; von Heijne G; Mingarro I
    Nat Commun; 2018 Dec; 9(1):5246. PubMed ID: 30531789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels.
    Zhu J; Yan J; Thornhill WB
    FEBS J; 2012 Aug; 279(15):2632-44. PubMed ID: 22613618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient tertiary structure formation within the ribosome exit port.
    O'Brien EP; Hsu ST; Christodoulou J; Vendruscolo M; Dobson CM
    J Am Chem Soc; 2010 Dec; 132(47):16928-37. PubMed ID: 21062068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding zones inside the ribosomal exit tunnel.
    Lu J; Deutsch C
    Nat Struct Mol Biol; 2005 Dec; 12(12):1123-9. PubMed ID: 16299515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenesis of the T1-S1 linker of voltage-gated K+ channels.
    Tu L; Wang J; Deutsch C
    Biochemistry; 2007 Jul; 46(27):8075-84. PubMed ID: 17567042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tertiary and quaternary structure formation of voltage-gated potassium channels.
    Robinson JM; Kosolapov A; Deutsch C
    Methods Mol Biol; 2006; 337():41-52. PubMed ID: 16929937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burial of nonpolar surface area and thermodynamic stabilization of globins as a function of chain elongation.
    Jennaro TS; Beaty MR; Kurt-Yilmaz N; Luskin BL; Cavagnero S
    Proteins; 2014 Oct; 82(10):2318-31. PubMed ID: 24752983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allowed N-glycosylation sites on the Kv1.2 potassium channel S1-S2 linker: implications for linker secondary structure and the glycosylation effect on channel function.
    Zhu J; Watanabe I; Poholek A; Koss M; Gomez B; Yan C; Recio-Pinto E; Thornhill WB
    Biochem J; 2003 Nov; 375(Pt 3):769-75. PubMed ID: 12911333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Terminally extended analogues of the K⁺ channel toxin from Stichodactyla helianthus as potent and selective blockers of the voltage-gated potassium channel Kv1.3.
    Chang SC; Huq R; Chhabra S; Beeton C; Pennington MW; Smith BJ; Norton RS
    FEBS J; 2015 Jun; 282(12):2247-59. PubMed ID: 25864722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Determinants of Kv1.3 Potassium Channels-induced Proliferation.
    Jiménez-Pérez L; Cidad P; Álvarez-Miguel I; Santos-Hipólito A; Torres-Merino R; Alonso E; de la Fuente MÁ; López-López JR; Pérez-García MT
    J Biol Chem; 2016 Feb; 291(7):3569-80. PubMed ID: 26655221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.