BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20060934)

  • 1. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study.
    McClure MJ; Sell SA; Simpson DG; Walpoth BH; Bowlin GL
    Acta Biomater; 2010 Jul; 6(7):2422-33. PubMed ID: 20060934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tri-layered electrospinning to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study.
    McClure MJ; Sell SA; Simpson DG; Walpoth BH; Bowlin GL
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21248694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tri-layered vascular grafts composed of polycaprolactone, elastin, collagen, and silk: Optimization of graft properties.
    McClure MJ; Simpson DG; Bowlin GL
    J Mech Behav Biomed Mater; 2012 Jun; 10():48-61. PubMed ID: 22520418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts.
    Sell SA; McClure MJ; Barnes CP; Knapp DC; Walpoth BH; Simpson DG; Bowlin GL
    Biomed Mater; 2006 Jun; 1(2):72-80. PubMed ID: 18460759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix.
    McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL
    Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study.
    Smith MJ; McClure MJ; Sell SA; Barnes CP; Walpoth BH; Simpson DG; Bowlin GL
    Acta Biomater; 2008 Jan; 4(1):58-66. PubMed ID: 17897890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled fabrication of triple layered and molecularly defined collagen/elastin vascular grafts resembling the native blood vessel.
    Koens MJ; Faraj KA; Wismans RG; van der Vliet JA; Krasznai AG; Cuijpers VM; Jansen JA; Daamen WF; van Kuppevelt TH
    Acta Biomater; 2010 Dec; 6(12):4666-74. PubMed ID: 20619367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel-electrospun mesh composites for coronary artery bypass grafts.
    McMahon RE; Qu X; Jimenez-Vergara AC; Bashur CA; Guelcher SA; Goldstein AS; Hahn MS
    Tissue Eng Part C Methods; 2011 Apr; 17(4):451-61. PubMed ID: 21083438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties.
    Wise SG; Byrom MJ; Waterhouse A; Bannon PG; Weiss AS; Ng MK
    Acta Biomater; 2011 Jan; 7(1):295-303. PubMed ID: 20656079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrospun triphasic nanofibrous scaffold for bone tissue engineering.
    Catledge SA; Clem WC; Shrikishen N; Chowdhury S; Stanishevsky AV; Koopman M; Vohra YK
    Biomed Mater; 2007 Jun; 2(2):142-50. PubMed ID: 18458448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a reinforced porcine elastin composite vascular scaffold.
    Hinds MT; Rowe RC; Ren Z; Teach J; Wu PC; Kirkpatrick SJ; Breneman KD; Gregory KW; Courtman DW
    J Biomed Mater Res A; 2006 Jun; 77(3):458-69. PubMed ID: 16453334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor.
    Iwasaki K; Kojima K; Kodama S; Paz AC; Chambers M; Umezu M; Vacanti CA
    Circulation; 2008 Sep; 118(14 Suppl):S52-7. PubMed ID: 18824769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses.
    Xie Y; Guan Y; Kim SH; King MW
    J Mech Behav Biomed Mater; 2016 Aug; 61():410-418. PubMed ID: 27111627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends.
    Thomas V; Zhang X; Vohra YK
    Biotechnol Bioeng; 2009 Dec; 104(5):1025-33. PubMed ID: 19575442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts.
    Berglund JD; Nerem RM; Sambanis A
    Tissue Eng; 2004; 10(9-10):1526-35. PubMed ID: 15588412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acellular vascular grafts generated from collagen and elastin analogs.
    Kumar VA; Caves JM; Haller CA; Dai E; Liu L; Grainger S; Chaikof EL
    Acta Biomater; 2013 Sep; 9(9):8067-74. PubMed ID: 23743129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
    Johnson J; Niehaus A; Nichols S; Lee D; Koepsel J; Anderson D; Lannutti J
    J Biomater Sci Polym Ed; 2009; 20(4):467-81. PubMed ID: 19228448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular replacement using a layered elastin-collagen vascular graft in a porcine model: one week patency versus one month occlusion.
    Koens MJ; Krasznai AG; Hanssen AE; Hendriks T; Praster R; Daamen WF; van der Vliet JA; van Kuppevelt TH
    Organogenesis; 2015; 11(3):105-21. PubMed ID: 26060888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.