These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20061130)

  • 1. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.
    Kurola JM; Arnold M; Kontro MH; Talves M; Romantschuk M
    Waste Manag; 2010 May; 30(5):779-86. PubMed ID: 20061130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ash in composting of source-separated catering waste.
    Koivula N; Räikkönen T; Urpilainen S; Ranta J; Hänninen K
    Bioresour Technol; 2004 Jul; 93(3):291-9. PubMed ID: 15062825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (M)VOC and composting facilities. Part 2: (M)VOC dispersal in the environment.
    Müller T; Thissen R; Braun S; Dott W; Fischer G
    Environ Sci Pollut Res Int; 2004; 11(3):152-7. PubMed ID: 15259697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge.
    Blazy V; de Guardia A; Benoist JC; Daumoin M; Lemasle M; Wolbert D; Barrington S
    Waste Manag; 2014 Jul; 34(7):1125-38. PubMed ID: 24768513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odour control at biowaste composting facilities.
    Schlegelmilch M; Streese J; Biedermann W; Herold T; Stegmann R
    Waste Manag; 2005; 25(9):917-27. PubMed ID: 16140001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of chloromethoxybenzaldehyde during composting of organic household waste.
    Eklind Y; Hjelm O; Kothéus M; Kirchmann H
    Chemosphere; 2004 Aug; 56(5):475-80. PubMed ID: 15212913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-composting of biowaste and wood ash, influence on a microbially driven-process.
    Fernández-Delgado Juárez M; Prähauser B; Walter A; Insam H; Franke-Whittle IH
    Waste Manag; 2015 Dec; 46():155-64. PubMed ID: 26394680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food waste composting: its use as a peat replacement.
    Farrell M; Jones DL
    Waste Manag; 2010; 30(8-9):1495-501. PubMed ID: 20185289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Emission of odors from composting of biological waste].
    Pöhle H; Kliche R
    Zentralbl Hyg Umweltmed; 1996 Nov; 199(1):38-50. PubMed ID: 9409908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wood ash for application in municipal biowaste composting.
    Kurola JM; Arnold M; Kontro MH; Talves M; Romantschuk M
    Bioresour Technol; 2011 Apr; 102(8):5214-20. PubMed ID: 21349704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial diversity during Rotary Drum and Windrow Pile composting.
    Bhatia A; Ali M; Sahoo J; Madan S; Pathania R; Ahmed N; Kazmi AA
    J Basic Microbiol; 2012 Feb; 52(1):5-15. PubMed ID: 21953506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occupational hygiene in a Finnish drum composting plant.
    Tolvanen O; Nykänen J; Nivukoski U; Himanen M; Veijanen A; Hänninen K
    Waste Manag; 2005; 25(4):427-33. PubMed ID: 15869986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compost biofiltration of ammonia gas from bin composting.
    Hong JH; Park KJ
    Bioresour Technol; 2005 Apr; 96(6):741-5. PubMed ID: 15588776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of chopped heath biomass and spent growth media to replace wood chips as bulking agent for composting high N-containing residues.
    Viaene J; Reubens B; Willekens K; Van Waes C; De Neve S; Vandecasteele B
    J Environ Manage; 2017 Jul; 197():338-350. PubMed ID: 28402916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced bioconversion of biowaste for production of a peat substitute and renewable energy.
    Veeken A; de Wilde V; Woelders H; Hamelers B
    Bioresour Technol; 2004 Apr; 92(2):121-31. PubMed ID: 14693444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.
    Schiavon M; Martini LM; Corrà C; Scapinello M; Coller G; Tosi P; Ragazzi M
    Environ Pollut; 2017 Dec; 231(Pt 1):845-853. PubMed ID: 28869831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Usual variables and odour concentration to evaluate composting process and odour impact.
    Gutiérrez MC; Martín MA; Chica AF
    Environ Technol; 2014; 35(5-8):709-18. PubMed ID: 24645451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste.
    Steger K; Sjögren AM; Jarvis A; Jansson JK; Sundh I
    J Appl Microbiol; 2007 Aug; 103(2):487-98. PubMed ID: 17650210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH and microbial composition on odour in food waste composting.
    Sundberg C; Yu D; Franke-Whittle I; Kauppi S; Smårs S; Insam H; Romantschuk M; Jönsson H
    Waste Manag; 2013 Jan; 33(1):204-11. PubMed ID: 23122203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging two waste streams, wood ash and biowaste, results in improved composting process and end products.
    Fernández-Delgado Juárez M; Gómez-Brandón M; Insam H
    Sci Total Environ; 2015 Apr; 511():91-100. PubMed ID: 25536175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.