These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
641 related articles for article (PubMed ID: 20061139)
21. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. De Bari I; Cuna D; Di Matteo V; Liuzzi F N Biotechnol; 2014 Mar; 31(2):185-95. PubMed ID: 24378965 [TBL] [Abstract][Full Text] [Related]
22. Pretreatment of corn stover for sugar production with switchgrass-derived black liquor. Xu J; Zhang X; Cheng JJ Bioresour Technol; 2012 May; 111():255-60. PubMed ID: 22357289 [TBL] [Abstract][Full Text] [Related]
23. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. O'Dwyer JP; Zhu L; Granda CB; Holtzapple MT Bioresour Technol; 2007 Nov; 98(16):2969-77. PubMed ID: 17140790 [TBL] [Abstract][Full Text] [Related]
24. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Wyman CE; Dale BE; Elander RT; Holtzapple M; Ladisch MR; Lee YY Bioresour Technol; 2005 Dec; 96(18):2026-32. PubMed ID: 16112491 [TBL] [Abstract][Full Text] [Related]
25. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Thomsen MH; Thygesen A; Thomsen AB Bioresour Technol; 2008 Jul; 99(10):4221-8. PubMed ID: 17936621 [TBL] [Abstract][Full Text] [Related]
26. Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Humbird D; Mohagheghi A; Dowe N; Schell DJ Biotechnol Prog; 2010; 26(5):1245-51. PubMed ID: 20945482 [TBL] [Abstract][Full Text] [Related]
27. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Gao Y; Xu J; Yuan Z; Zhang Y; Liu Y; Liang C Bioresour Technol; 2014 Sep; 167():41-5. PubMed ID: 24968110 [TBL] [Abstract][Full Text] [Related]
28. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Kumar R; Mago G; Balan V; Wyman CE Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819 [TBL] [Abstract][Full Text] [Related]
29. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Zhu Y; Lee YY; Elander RT Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):721-38. PubMed ID: 18478429 [TBL] [Abstract][Full Text] [Related]
30. Efficacy of a hot washing process for pretreated yellow poplar to enhance bioethanol production. Nagle NJ; Elander RT; Newman MM; Rohrback BT; Ruiz RO; Torget RW Biotechnol Prog; 2002; 18(4):734-8. PubMed ID: 12153306 [TBL] [Abstract][Full Text] [Related]
31. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Bura R; Chandra R; Saddler J Biotechnol Prog; 2009; 25(2):315-22. PubMed ID: 19266561 [TBL] [Abstract][Full Text] [Related]
32. A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass. Lee JM; Jameel H; Venditti RA Bioresour Technol; 2010 Jul; 101(14):5449-58. PubMed ID: 20223654 [TBL] [Abstract][Full Text] [Related]
33. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Banerjee G; Car S; Liu T; Williams DL; Meza SL; Walton JD; Hodge DB Biotechnol Bioeng; 2012 Apr; 109(4):922-31. PubMed ID: 22125119 [TBL] [Abstract][Full Text] [Related]
35. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Zhu Z; Sathitsuksanoh N; Vinzant T; Schell DJ; McMillan JD; Zhang YH Biotechnol Bioeng; 2009 Jul; 103(4):715-24. PubMed ID: 19337984 [TBL] [Abstract][Full Text] [Related]
36. Thermostable enzymes in lignocellulose hydrolysis. Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813 [TBL] [Abstract][Full Text] [Related]
37. Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production. Szijártó N; Kádár Z; Varga E; Thomsen AB; Costa-Ferreira M; Réczey K Appl Biochem Biotechnol; 2009 May; 155(1-3):386-96. PubMed ID: 19214791 [TBL] [Abstract][Full Text] [Related]
38. Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Yang J; Zhang X; Yong Q; Yu S Bioresour Technol; 2010 Jul; 101(13):4930-5. PubMed ID: 19857959 [TBL] [Abstract][Full Text] [Related]
39. The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Nakagame S; Chandra RP; Saddler JN Biotechnol Bioeng; 2010 Apr; 105(5):871-9. PubMed ID: 19998278 [TBL] [Abstract][Full Text] [Related]
40. Cellulase retention and sugar removal by membrane ultrafiltration during lignocellulosic biomass hydrolysis. Knutsen JS; Davis RH Appl Biochem Biotechnol; 2004; 113-116():585-99. PubMed ID: 15054279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]